Home
Class 12
MATHS
The value of int(3)^(5) (x^(2))/(x^(2)-4...

The value of `int_(3)^(5) (x^(2))/(x^(2)-4)`dx, is

A

`2-log_(e )((15)/(7))`

B

`2+log_(e )((15)/(7))`

C

`2+4log_(e )3-4 log_(e )7+4 log_(e )5`

D

`2-tan^(-1)((15)/(7))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{3}^{5} \frac{x^2}{x^2 - 4} \, dx \), we can break it down into simpler parts. Here are the steps: ### Step 1: Rewrite the integrand We can rewrite the integrand by splitting the fraction: \[ \frac{x^2}{x^2 - 4} = \frac{x^2 - 4 + 4}{x^2 - 4} = \frac{x^2 - 4}{x^2 - 4} + \frac{4}{x^2 - 4} = 1 + \frac{4}{x^2 - 4} \] Thus, we have: \[ I = \int_{3}^{5} \left( 1 + \frac{4}{x^2 - 4} \right) \, dx \] ### Step 2: Separate the integral Now we can separate the integral: \[ I = \int_{3}^{5} 1 \, dx + \int_{3}^{5} \frac{4}{x^2 - 4} \, dx \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int_{3}^{5} 1 \, dx = [x]_{3}^{5} = 5 - 3 = 2 \] ### Step 4: Evaluate the second integral For the second integral, we can use the formula for the integral of \( \frac{1}{x^2 - a^2} \): \[ \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \] In our case, \( a = 2 \), so: \[ \int \frac{4}{x^2 - 4} \, dx = 4 \cdot \frac{1}{2 \cdot 2} \ln \left| \frac{x - 2}{x + 2} \right| = \ln \left| \frac{x - 2}{x + 2} \right| \] Thus, \[ \int_{3}^{5} \frac{4}{x^2 - 4} \, dx = \left[ \ln \left| \frac{x - 2}{x + 2} \right| \right]_{3}^{5} \] ### Step 5: Calculate the limits for the second integral Now we evaluate the limits: \[ \left[ \ln \left| \frac{x - 2}{x + 2} \right| \right]_{3}^{5} = \ln \left| \frac{5 - 2}{5 + 2} \right| - \ln \left| \frac{3 - 2}{3 + 2} \right| \] Calculating these: \[ = \ln \left| \frac{3}{7} \right| - \ln \left| \frac{1}{5} \right| = \ln \left( \frac{3}{7} \cdot 5 \right) = \ln \left( \frac{15}{7} \right) \] ### Step 6: Combine the results Now we can combine the results: \[ I = 2 + \ln \left( \frac{15}{7} \right) \] ### Final Result Thus, the value of the integral is: \[ I = 2 + \ln \left( \frac{15}{7} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(3)^(5)(x^(2)dx)/(x^(2)-4)

The value of int_(0)^(1) 4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is

int (x^(3) +5x^(2) -4)/(x^(2)) dx

The value of int(dx)/((x+2)(x+3))

The value of int_(0)^(1)4x^(3){(d^(2))/(dx^(2))(1-x^(2))^(5)}dx is

The value of int_(2)^(3)(x-2)^(5)(3-x)^(6)dx is

int_(4)^(5)((2-x)/(x-3))dx

The value of int (dx)/(x^(4)+5x^(2)+4) is

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 1
  1. int(-pi)^(pi) [cos px-sin qx]^(2) dx where p,q are integers is equal t...

    Text Solution

    |

  2. If int(0)^(pi//3) (cos x)/(3+4 sin x)dx=k log ((3+2sqrt(3))/(3)), then...

    Text Solution

    |

  3. The value of int(3)^(5) (x^(2))/(x^(2)-4)dx, is

    Text Solution

    |

  4. The greater value of (x)=int(-1//2)^(x) |t|dt on the interval [-1//2,1...

    Text Solution

    |

  5. f(x)={:{(1-x","" "0 le c le 1),(0","" "1 le x le 2" and "phi ...

    Text Solution

    |

  6. If f(x)=int(x)^(-1) |t|dt, then for any x ge 0, f(x) equals

    Text Solution

    |

  7. int0^(2) (x-log(2)a)dx=2 log((2)/(a)), if

    Text Solution

    |

  8. If int(1)^(a) (a-4x)dx ge 6-5a, a gt 1, then a equals

    Text Solution

    |

  9. The value of int1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2),...

    Text Solution

    |

  10. If C0/1+C1/2+C2/3=0 , where C0 C1, C2 are all real, the equation C2x...

    Text Solution

    |

  11. The solution of the equation int(log(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2...

    Text Solution

    |

  12. If int(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6, then

    Text Solution

    |

  13. Let m be any integer. Then, the integral int(0)^(pi) (sin 2m x)/(sin x...

    Text Solution

    |

  14. int(-pi//4)^(pi//4) e^(-x)sin x" dx" is

    Text Solution

    |

  15. (d)/(dx)(f(x))=phi(x)" for "a lex le b,int(a)^(b) f(x)phi(x)dx=

    Text Solution

    |

  16. int(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=

    Text Solution

    |

  17. int(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

    Text Solution

    |

  18. int(0)^(oo) (x)/(1-x)^(3//4)dx=

    Text Solution

    |

  19. int(0)^(pi) xsin x cos^(4)x dx=

    Text Solution

    |

  20. int(0)^(pi) [2sin x]dx=

    Text Solution

    |