Home
Class 12
MATHS
The greater value of (x)=int(-1//2)^(x) ...

The greater value of (x)`=int_(-1//2)^(x) |t|dt` on the interval `[-1//2,1//2]` , is

A

`(3)/(8)`

B

`(1)/(4)`

C

`-(3)/(8)`

D

`-(1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The greatest value of f(x)=int_(1)^(x)|t||dt on the interval [-(1)/(2),(1)/(2)]:

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

If f(x)= int_(1/x^2)^(x^2)cos sqrt(t)dt , then f'(1)=

If f(x)=1+(1)/(x)int_(1)^(x)f(t)dt, then the value of (e^(-1)) is

(d)/(dx) int_(2)^(x^(2)) (t -1) dt is equal to

If f(x)={int_(0)^(x)|1-t|dt;x>1,x-(1)/(2);x<=1 then