Home
Class 12
MATHS
The solution of the equation int(log(2))...

The solution of the equation `int_(log_(2))^(x) (1)/(e^(x)-1)dx=log(3)/(2)` is given by x=

A

`e^(2)`

B

`1//e`

C

log 4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \int_{\log 2}^{x} \frac{1}{e^x - 1} \, dx = \frac{\log 3}{2}, \] we will follow these steps: ### Step 1: Change of Variable Let \( t = e^x - 1 \). Then, we have: \[ e^x = t + 1 \quad \text{and} \quad dx = \frac{dt}{e^x} = \frac{dt}{t + 1}. \] ### Step 2: Rewrite the Integral The integral becomes: \[ \int \frac{1}{t} \cdot \frac{dt}{t + 1} = \int \frac{1}{t(t + 1)} \, dt. \] ### Step 3: Partial Fraction Decomposition We can decompose the integrand: \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1}. \] ### Step 4: Integrate Now we can integrate: \[ \int \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt = \log |t| - \log |t + 1| + C = \log \left( \frac{t}{t + 1} \right) + C. \] ### Step 5: Substitute Back Substituting back \( t = e^x - 1 \): \[ \log \left( \frac{e^x - 1}{e^x} \right) = \log \left( \frac{e^x - 1}{e^x} \right) = \log \left( 1 - \frac{1}{e^x} \right). \] ### Step 6: Set the Limits Now we evaluate the definite integral from \( \log 2 \) to \( x \): \[ \left[ \log \left( 1 - \frac{1}{e^x} \right) \right]_{\log 2}^{x} = \log \left( 1 - \frac{1}{e^x} \right) - \log \left( 1 - \frac{1}{e^{\log 2}} \right). \] ### Step 7: Calculate the Lower Limit Calculating the lower limit: \[ e^{\log 2} = 2 \Rightarrow 1 - \frac{1}{2} = \frac{1}{2} \Rightarrow \log \left( \frac{1}{2} \right) = -\log 2. \] ### Step 8: Set the Equation Setting the equation: \[ \log \left( 1 - \frac{1}{e^x} \right) + \log 2 = \frac{\log 3}{2}. \] ### Step 9: Simplify This simplifies to: \[ \log \left( 2 \left( 1 - \frac{1}{e^x} \right) \right) = \frac{\log 3}{2}. \] ### Step 10: Exponentiate Exponentiating both sides gives: \[ 2 \left( 1 - \frac{1}{e^x} \right) = \sqrt{3}. \] ### Step 11: Solve for \( e^x \) Solving for \( e^x \): \[ 1 - \frac{1}{e^x} = \frac{\sqrt{3}}{2} \Rightarrow \frac{1}{e^x} = 1 - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2}. \] ### Step 12: Final Calculation Thus, \[ e^x = \frac{2}{2 - \sqrt{3}}. \] Taking the logarithm gives: \[ x = \log \left( \frac{2}{2 - \sqrt{3}} \right). \] ### Final Answer Thus, the solution for \( x \) is: \[ x = \log 4. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(2)^(3)log(x-1)/(x-1)dx

" "int(log_(e)x)/((1+x)^(2))dx

int(log_(e)x)/((1+x)^(2))dx

int(log_(e)x)/((1+x)^(2))dx

int_((1)/(2))^(2)(ln x)/(1+x^(2))dx

int_(1)^(e^(2))(ln x)/(sqrt(x))dx=

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

int log_(e)xdx=int(1)/(log_(x)e)dx=