Home
Class 12
MATHS
If int(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))...

If `int_(a)^(b) (x^(n))/(x^(n)+(16-x)^(n))dx=6`, then

A

`a=4,b=12,n in R`

B

`a=2,b=14,n in R`

C

`a=-4,b=20,n in R`

D

`a=2,b=8, n in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral equation \[ \int_{a}^{b} \frac{x^n}{x^n + (16 - x)^n} \, dx = 6, \] we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx + \int_{a}^{b} f(b - x) \, dx = b - a. \] Here, we will define \[ f(x) = \frac{x^n}{x^n + (16 - x)^n}. \] Now, let's compute \( f(16 - x) \): \[ f(16 - x) = \frac{(16 - x)^n}{(16 - x)^n + x^n}. \] Notice that: \[ f(x) + f(16 - x) = \frac{x^n}{x^n + (16 - x)^n} + \frac{(16 - x)^n}{(16 - x)^n + x^n} = 1. \] Thus, we can write: \[ \int_{a}^{b} f(x) \, dx + \int_{a}^{b} f(16 - x) \, dx = \int_{a}^{b} 1 \, dx = b - a. \] Since both integrals are equal, we can denote: \[ I = \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(16 - x) \, dx. \] Therefore, we have: \[ I + I = b - a \quad \Rightarrow \quad 2I = b - a \quad \Rightarrow \quad I = \frac{b - a}{2}. \] Given that \( I = 6 \), we can substitute: \[ 6 = \frac{b - a}{2} \quad \Rightarrow \quad b - a = 12. \] Now, we can express \( b \) in terms of \( a \): \[ b = a + 12. \] Next, we need to find the values of \( a \) and \( b \). Since \( a \) and \( b \) are not specified in the problem, they can take any values as long as their difference is 12. For instance, we can choose \( a = 0 \) and \( b = 12 \). Thus, we can conclude: \[ a = 0, \quad b = 12. \] Now, we need to determine the value of \( n \). The integral \( \int_{0}^{12} \frac{x^n}{x^n + (16 - x)^n} \, dx = 6 \) holds for any positive integer \( n \). However, for the sake of simplicity, we can choose \( n = 1 \) as a common case. ### Final Answer: - \( a = 0 \) - \( b = 12 \) - \( n = 1 \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate of each of the following integral: int_a^b(x^(1//n))/(x^(1//n)+(a+b-x)^(1/n))dx ,\ n N ,\ ngeq2

int(2x^(n-1))/(x^(n)+3)dx

inte^(x) .(a+be^(x))^(n) dx

int(dx)/(x^(n)(1+x^(n))^((1)/(n)))

int (x ^(n-1))/( x ^(2n) + a ^(2)) dx =

int(1)/(x(x^(n)+1))dx

The value of int_(a)^(b)(x-a)^(3)(b-x)^(4)dx is ((b-a)^(m))/(n). Then (m, n) is

int(x^(n-1))/(sqrt(1+4x^(n)))dx