Home
Class 12
MATHS
int(-pi//4)^(pi//4) e^(-x)sin x" dx" is...

`int_(-pi//4)^(pi//4) e^(-x)sin x" dx"` is

A

`-(sqrt(2))/(2)e^(pi//4)`

B

`(sqrt(2))/(2)e^(-pi//4)`

C

`sqrt(2)(e^(-pi//4)-e^(pi//4))`

D

zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} e^{-x} \sin x \, dx \), we will use the method of integration by parts. ### Step 1: Set up the integration by parts We choose: - \( u = \sin x \) (which will differentiate to \( \cos x \)) - \( dv = e^{-x} \, dx \) (which will integrate to \( v = -e^{-x} \)) Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] ### Step 2: Apply integration by parts Substituting our choices into the formula: \[ I = \int e^{-x} \sin x \, dx = -e^{-x} \sin x - \int -e^{-x} \cos x \, dx \] This simplifies to: \[ I = -e^{-x} \sin x + \int e^{-x} \cos x \, dx \] ### Step 3: Solve the second integral using integration by parts again Now we need to evaluate \( \int e^{-x} \cos x \, dx \). We apply integration by parts again: - Let \( u = \cos x \) (which differentiates to \( -\sin x \)) - Let \( dv = e^{-x} \, dx \) (which integrates to \( v = -e^{-x} \)) Using the integration by parts formula again: \[ \int e^{-x} \cos x \, dx = -e^{-x} \cos x - \int -e^{-x} (-\sin x) \, dx \] This simplifies to: \[ \int e^{-x} \cos x \, dx = -e^{-x} \cos x - \int e^{-x} \sin x \, dx \] ### Step 4: Substitute back into the equation for \( I \) Now we substitute back into our equation for \( I \): \[ I = -e^{-x} \sin x - e^{-x} \cos x - I \] Rearranging gives: \[ 2I = -e^{-x} (\sin x + \cos x) \] Thus: \[ I = -\frac{1}{2} e^{-x} (\sin x + \cos x) \] ### Step 5: Evaluate the definite integral Now we need to evaluate this from \( -\frac{\pi}{4} \) to \( \frac{\pi}{4} \): \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \left( \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \right) - e^{\frac{\pi}{4}} \left( \sin\left(-\frac{\pi}{4}\right) + \cos\left(-\frac{\pi}{4}\right) \right) \right] \] ### Step 6: Substitute the values of sine and cosine We know that: \[ \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] And: \[ \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}, \quad \cos\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Substituting these values gives: \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) - e^{\frac{\pi}{4}} \left( -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) \right] \] This simplifies to: \[ I = -\frac{1}{2} \left[ e^{-\frac{\pi}{4}} \cdot \frac{2}{\sqrt{2}} - 0 \right] \] Thus: \[ I = -\frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}} \] ### Final Result The value of the integral is: \[ I = -\frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//4)^(pi//4) x^(3) sin^(4) x dx is equal to

int_(-pi//4)^(pi//4) dx/(1-sin x)=

The value of int_(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

int_(-pi//4)^(pi//4) dx/(1+sin x)=

int_(-pi//4)^(pi//4)sin^(2)x dx=

int_(0)^(pi//4)e^(x)sin x dx =

int_((-pi)/(4))^((pi)/(2))e^(-x)sin xdx=

Evaluate int _(-pi//4)^(pi//4)x^(3) sin ^(4) x dx