Home
Class 12
MATHS
(d)/(dx)(f(x))=phi(x)" for "a lex le b,i...

`(d)/(dx)(f(x))=phi(x)" for "a lex le b,int_(a)^(b) f(x)phi(x)dx=`

A

`f(b)-f(a)`

B

`phi(b)-phi(a)`

C

`([f(b)]^(2)-[f(a)]^(2))/(1+e^(x))`

D

`([phi(b)]^(2)-[phi(a)]^(2))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx)f(x)=g(x) for a le x le b then, int_(a)^(b) f(x) g(x) dx equals

if (d)/(dx)f(x)=g(x), find the value of int_(a)^(b)f(x)g(x)dx

int_(a)^(b)f(x)dx=phi(b)-phi(a)

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

If (d)/(dx)[g(x)]=f(x) , then : int_(a)^(b)f(x)g(x)dx=

If f(0)=2, f'(x) =f(x), phi (x) = x+f(x) then int_(0)^(1) f(x) phi (x) dx is

int_a^b[d/dx(f(x))]dx

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

int[(d)/(dx)f(x)]dx=