Home
Class 12
MATHS
int(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=...

`int_(-pi//2)^(pi//2) (cos x)/(1+e^(x))dx=`

A

1

B

0

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx, \] we can use the property of definite integrals which states that \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Identify \( a \) and \( b \) In our case, \( a = -\frac{\pi}{2} \) and \( b = \frac{\pi}{2} \). Therefore, we calculate \( a + b \): \[ a + b = -\frac{\pi}{2} + \frac{\pi}{2} = 0. \] ### Step 2: Substitute into the integral Now, we substitute \( a + b - x \) into the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(0 - x)}{1 + e^{-x}} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos(-x)}{1 + e^{-x}} \, dx. \] Since \( \cos(-x) = \cos(x) \), we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{-x}} \, dx. \] ### Step 3: Rewrite the integral Now, we can rewrite the term \( \frac{1}{1 + e^{-x}} \): \[ \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}. \] Thus, we can express \( I \) as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{-x}} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x \cos x}{e^x + 1} \, dx. \] ### Step 4: Combine the two integrals Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^x \cos x}{e^x + 1} \, dx \) Adding these two integrals gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{\cos x}{1 + e^x} + \frac{e^x \cos x}{e^x + 1} \right) dx. \] ### Step 5: Simplify the integrand The integrand simplifies to: \[ \frac{\cos x + e^x \cos x}{1 + e^x} = \frac{\cos x (1 + e^x)}{1 + e^x} = \cos x. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx. \] ### Step 6: Evaluate the integral The integral of \( \cos x \) is: \[ \int \cos x \, dx = \sin x. \] Evaluating from \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2. \] ### Step 7: Solve for \( I \) Now we can solve for \( I \): \[ 2I = 2 \implies I = 1. \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^x} \, dx = 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Evaluate of each of the following integral: int_(-pi//2)^(pi//2)(cos^2x)/(1+e^x)dx

int_(-pi/2)^(pi/2) (cos^2x)/(1+3^x)dx

The value of int_(-pi//2)^(pi//2) (x^(2)cos x )/(1+e^(x)) dx is equal to

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

Evaluate: int_(-pi/2)^( pi/2)(x sin x)/(e^(x)+1)dx

The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

int_(-pi//2)^(pi//2)cos^(6)x dx=

The value of int_(-(pi)/(2))^(pi/2)(x^(2)cosx)/(1+e^(x))dx is equal to