Home
Class 12
MATHS
int(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))...

`int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=`

A

`(3)/(8)`

B

`(1)/(8)`

C

`-(3)/(8)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{dx}{(x + \sqrt{x^2 + 1})^3} \] we will follow a series of steps to simplify and evaluate it. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_{0}^{\infty} \frac{dx}{(x + \sqrt{x^2 + 1})^3} \] ### Step 2: Simplify the Denominator Notice that we can factor out \( \sqrt{x^2} \) from the square root: \[ \sqrt{x^2 + 1} = \sqrt{x^2(1 + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x^2}} \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{\infty} \frac{dx}{(x + x\sqrt{1 + \frac{1}{x^2}})^3} \] ### Step 3: Factor Out \( x \) Now, factor out \( x \) from the denominator: \[ I = \int_{0}^{\infty} \frac{dx}{x^3(1 + \sqrt{1 + \frac{1}{x^2}})^3} \] ### Step 4: Change of Variables Let \( z = \sqrt{1 + \frac{1}{x^2}} \). Then, we have: \[ \frac{1}{z^2 - 1} = \frac{1}{\frac{1}{x^2}} \implies dx = -\frac{2}{z^3} dz \] ### Step 5: Change of Limits As \( x \to 0 \), \( z \to \infty \) and as \( x \to \infty \), \( z \to 1 \). Thus, we change the limits of integration: \[ I = \int_{\infty}^{1} \frac{-2}{(z^2 - 1)^3} dz \] ### Step 6: Reverse the Limits Reversing the limits gives: \[ I = 2 \int_{1}^{\infty} \frac{dz}{(z^2 - 1)^3} \] ### Step 7: Evaluate the Integral Now we can evaluate the integral: \[ \int_{1}^{\infty} \frac{dz}{(z^2 - 1)^3} \] This can be done using integration techniques such as partial fractions or substitution. ### Step 8: Final Calculation After evaluating the integral, we find: \[ I = \frac{3}{8} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\frac{3}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int _(0)^(oo) (dx)/((x+ sqrt(x^(2)+1))^(3)) is equal to

int_(0)^(1)(dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(oo)(dx)/((1+x)sqrt(x))

int_(0)^(1)(dx)/(3sqrt(x))

int_(1)^(oo)(dx)/(x^(2))

If n>1, then int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n)) equals

int_(0)^(oo)(1)/(x+a)dx

int_(0)^(oo)e^(-x/2)dx

int_(0)^(oo)e^(-x/2)dx