Home
Class 12
MATHS
int(0)^(oo) (x)/(1-x)^(3//4)dx=...

`int_(0)^(oo) (x)/(1-x)^(3//4)dx=`

A

`(12)/(5)`

B

`(16)/(5)`

C

`-(16)/(5)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(dx)/((x+r)^(3/2))

int_(0)^(oo)(1)/(x+a)dx

int_(0)^(oo)(dx)/((1+x^(2))^(4))=

int_(0)^(oo)(x)/(1+x^(4))dx=

int_(1)^(oo)(dx)/(x^(2))

Let A=int_(0)^(oo)(log x)/(1+x^(3))dx Then find the value of int_(0)^(oo)(x log x)/(1+x^(3))dx in terms of A

int_(0)^(oo)(x)/((1+x)(1+x^(2)))dx

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)underset(0)overset(oo)int dx"then"n (I_(1))/(I_(2))=

int_(1)^( oo)(1)/(x)dx=

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is