Home
Class 12
MATHS
int(0)^(pi) xsin x cos^(4)x dx=...

`int_(0)^(pi) xsin x cos^(4)x dx=`

A

`(pi)/(10)`

B

`(pi)/(5)`

C

`-(pi)/(5)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \sin x \cos^4 x \, dx \), we can use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Apply the property of definite integrals We set \( a = \pi \) and rewrite the integral: \[ I = \int_{0}^{\pi} x \sin x \cos^4 x \, dx = \int_{0}^{\pi} (\pi - x) \sin(\pi - x) \cos^4(\pi - x) \, dx \] ### Step 2: Simplify the expression Using the identities \( \sin(\pi - x) = \sin x \) and \( \cos(\pi - x) = -\cos x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) \sin x \cos^4 x \, dx \] ### Step 3: Expand the integral Now, we can expand this integral: \[ I = \int_{0}^{\pi} \pi \sin x \cos^4 x \, dx - \int_{0}^{\pi} x \sin x \cos^4 x \, dx \] ### Step 4: Combine the integrals Let’s denote the second integral as \( I \): \[ I = \pi \int_{0}^{\pi} \sin x \cos^4 x \, dx - I \] ### Step 5: Solve for \( I \) Now, we can combine the terms: \[ 2I = \pi \int_{0}^{\pi} \sin x \cos^4 x \, dx \] Thus, \[ I = \frac{\pi}{2} \int_{0}^{\pi} \sin x \cos^4 x \, dx \] ### Step 6: Change of variables Next, we will use the substitution \( t = \cos x \), which gives \( dt = -\sin x \, dx \). The limits change as follows: when \( x = 0 \), \( t = 1 \) and when \( x = \pi \), \( t = -1 \). So, we have: \[ \int_{0}^{\pi} \sin x \cos^4 x \, dx = -\int_{1}^{-1} t^4 \, dt = \int_{-1}^{1} t^4 \, dt \] ### Step 7: Evaluate the integral Now we compute the integral: \[ \int_{-1}^{1} t^4 \, dt = 2 \int_{0}^{1} t^4 \, dt = 2 \left[ \frac{t^5}{5} \right]_{0}^{1} = 2 \cdot \frac{1}{5} = \frac{2}{5} \] ### Step 8: Substitute back to find \( I \) Now substituting back into our expression for \( I \): \[ I = \frac{\pi}{2} \cdot \frac{2}{5} = \frac{\pi}{5} \] ### Final Answer Thus, the final result is: \[ I = \frac{\pi}{5} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^( pi)x*sin x*cos^(4)x*dx

int_(0)^(pi) x sin x. cos^(2) x dx

" (8) "int_(0)^( pi)sin x*cos^(4)x*dx

int_(0)^(pi//2) x sin x cos x dx

int_(0)^(pi)sin 5 x cos 4x dx=

If int_(0)^(pi//2)sin^(4)x cos^(2)x dx=(pi)/(32) , then int_(0)^(pi//2)sin^(2)x cos^(4)x dx=

int_(0)^( pi)x(sin^(4)x cos^(4)x)dx

int_(0)^(pi//6) cos x cos 3x dx