Home
Class 12
MATHS
The value of int(pi//4)^(3pi//4) (x)/(1+...

The value of `int_(pi//4)^(3pi//4) (x)/(1+sin x)` dx is equal to

A

`(sqrt(2)-1)pi`

B

`(sqrt(2+1))pi`

C

`pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \), we will use the property of definite integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] ### Step 1: Apply the property of definite integrals Let \( a = \frac{\pi}{4} \) and \( b = \frac{3\pi}{4} \). Then, \( a + b = \frac{\pi}{4} + \frac{3\pi}{4} = \pi \). Using the property, we have: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin(\pi - x)} \, dx \] ### Step 2: Simplify the sine function Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi - x}{1 + \sin x} \, dx \] ### Step 3: Split the integral Now we can express \( I \) as: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx - \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{x}{1 + \sin x} \, dx \] This gives us: \[ I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx - I \] ### Step 4: Solve for \( I \) Adding \( I \) to both sides: \[ 2I = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx \] Thus, \[ I = \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{\pi}{1 + \sin x} \, dx \] ### Step 5: Evaluate the integral \( \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1}{1 + \sin x} \, dx \) To evaluate this integral, we can multiply the numerator and denominator by \( 1 - \sin x \): \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} \, dx = \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{1 - \sin x}{\cos^2 x} \, dx \] This simplifies to: \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sec^2 x - \tan x \sec^2 x \, dx \] ### Step 6: Integrate The integral of \( \sec^2 x \) is \( \tan x \) and the integral of \( \tan x \sec^2 x \) is \( \frac{1}{2} \tan^2 x \): \[ \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sec^2 x \, dx - \int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \tan x \sec^2 x \, dx \] Evaluating these integrals gives: \[ \tan\left(\frac{3\pi}{4}\right) - \tan\left(\frac{\pi}{4}\right) - \frac{1}{2} \left( \tan^2\left(\frac{3\pi}{4}\right) - \tan^2\left(\frac{\pi}{4}\right) \right) \] ### Step 7: Final Calculation After evaluating the integrals and substituting back, we find: \[ I = \frac{\pi}{2} - 1 \] Thus, the final value of the integral is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi//4)^(pi//4) x^(3) sin^(4) x dx is equal to

int_(-pi//4)^(pi//4) dx/(1-sin x)=

int_(-pi//4)^(pi//4) dx/(1+sin x)=

The value of int_(pi/4)^((3pi)/4)(cos x)/(1-cos x)dx is equal to (k-(pi)/(2)) then k=

int_(pi//4)^(3pi//4)(dx)/(1+cos x)=

int_(pi/4)^(3 pi/4)(x)/(1+sin x)dx is

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

int_(pi//4)^(pi//3)(sec x)/(sin x)dx =

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 1
  1. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  2. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  3. int(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  4. Let int(0)^(a) f(x)dx=lambda and int(0)^(a) f(2a-x)dx=mu. Then, int(...

    Text Solution

    |

  5. The value of int(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

    Text Solution

    |

  6. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  7. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  8. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  9. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  10. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  12. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  13. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  14. Let f(x) be an integrable function defined on [a,b],b gt a gt 0. If I(...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y)=e^(y),g(y)=y, y gt 0 and F(t)=int(0)^(t) f(t-y)g(y) dy, ...

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |