Home
Class 12
MATHS
Let I(n)=int(0)^(pi//2) cos^(n)x cos nx ...

Let `I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx`. Then, `I_(n):I_(n+1)` is equal to

A

`3:1`

B

`2:3`

C

`2:1`

D

`3:4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( I_n : I_{n+1} \) where \[ I_n = \int_0^{\frac{\pi}{2}} \cos^n x \cos(nx) \, dx. \] ### Step 1: Express \( I_n \) using integration by parts We can apply integration by parts to \( I_n \). We set: - \( u = \cos^n x \) - \( dv = \cos(nx) \, dx \) Then, we differentiate and integrate: - \( du = -n \cos^{n-1} x \sin x \, dx \) - \( v = \frac{\sin(nx)}{n} \) Using integration by parts, we have: \[ I_n = \left[ u v \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} v \, du \] ### Step 2: Evaluate the boundary term Evaluating the boundary term \( \left[ u v \right]_0^{\frac{\pi}{2}} \): At \( x = \frac{\pi}{2} \), \( \cos\left(\frac{\pi}{2}\right) = 0 \), so \( u v = 0 \). At \( x = 0 \), \( \cos(0) = 1 \) and \( \sin(0) = 0 \), so \( u v = 0 \). Thus, the boundary term is: \[ \left[ u v \right]_0^{\frac{\pi}{2}} = 0 - 0 = 0. \] ### Step 3: Substitute into the integral Now, substituting into the integral gives us: \[ I_n = -\int_0^{\frac{\pi}{2}} \frac{\sin(nx)}{n} \left(-n \cos^{n-1} x \sin x \right) \, dx. \] This simplifies to: \[ I_n = \int_0^{\frac{\pi}{2}} \cos^{n-1} x \sin^2 x \sin(nx) \, dx. \] ### Step 4: Express \( I_{n+1} \) Now, let's express \( I_{n+1} \): \[ I_{n+1} = \int_0^{\frac{\pi}{2}} \cos^{n+1} x \cos(nx) \, dx. \] ### Step 5: Form the ratio \( \frac{I_n}{I_{n+1}} \) Now we can find the ratio \( \frac{I_n}{I_{n+1}} \): \[ \frac{I_n}{I_{n+1}} = \frac{\int_0^{\frac{\pi}{2}} \cos^{n-1} x \sin^2 x \sin(nx) \, dx}{\int_0^{\frac{\pi}{2}} \cos^{n+1} x \cos(nx) \, dx}. \] ### Step 6: Simplify the ratio Notice that: \[ I_n = \frac{n}{n+1} I_{n-1}. \] From the recurrence relation, we can derive: \[ \frac{I_n}{I_{n+1}} = \frac{n}{n+1}. \] ### Conclusion Thus, the ratio \( I_n : I_{n+1} \) simplifies to: \[ \frac{I_n}{I_{n+1}} = \frac{2}{1}. \] Hence, the answer is: \[ I_n : I_{n+1} = 2 : 1. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I_(n)=int_(0)^(pi//2) x^(n) sin x dx , then I_(4)+12I_(2) is equal to\

Let I_(n)=int_(0)^(pi//4)tan^(n)xdx,n in N , Then

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

If l_(n)=int_(0)^(pi//4) tan^(n)x dx, n in N "then" I_(n+2)+I_(n) equals

If I_(n)=int_(0)^(pi//4)tan^(n)x dx, then 7(I_(6)+I_(8))=

let I_(n)=int_(0)^((pi)/(4))tan^(n)xdx,n>1

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 1
  1. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  2. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  3. int(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  4. Let int(0)^(a) f(x)dx=lambda and int(0)^(a) f(2a-x)dx=mu. Then, int(...

    Text Solution

    |

  5. The value of int(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

    Text Solution

    |

  6. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  7. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  8. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  9. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  10. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  12. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  13. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  14. Let f(x) be an integrable function defined on [a,b],b gt a gt 0. If I(...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y)=e^(y),g(y)=y, y gt 0 and F(t)=int(0)^(t) f(t-y)g(y) dy, ...

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |