Home
Class 12
MATHS
int(0)^(pi//4) sin(x-[x]) dx is equalto...

`int_(0)^(pi//4) sin(x-[x])` dx is equalto

A

`(1)/(2)`

B

`1-(1)/(sqrt(2))`

C

1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{4}} \sin(x - [x]) \, dx \), we can follow these steps: ### Step 1: Understand the function \( [x] \) The function \( [x] \) denotes the greatest integer function (or floor function), which gives the largest integer less than or equal to \( x \). ### Step 2: Analyze the limits of integration Since we are integrating from \( 0 \) to \( \frac{\pi}{4} \) and \( \frac{\pi}{4} \approx 0.785 \), which is less than \( 1 \), we can conclude that for all \( x \) in the interval \( [0, \frac{\pi}{4}] \), the value of \( [x] \) will be \( 0 \). ### Step 3: Simplify the integral Given that \( [x] = 0 \) in the interval, we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{4}} \sin(x - [x]) \, dx = \int_{0}^{\frac{\pi}{4}} \sin(x - 0) \, dx = \int_{0}^{\frac{\pi}{4}} \sin(x) \, dx \] ### Step 4: Integrate \( \sin(x) \) The integral of \( \sin(x) \) is: \[ -\cos(x) \] Thus, we evaluate: \[ \int_{0}^{\frac{\pi}{4}} \sin(x) \, dx = \left[-\cos(x)\right]_{0}^{\frac{\pi}{4}} \] ### Step 5: Apply the limits Now we substitute the limits into the integrated function: \[ -\cos\left(\frac{\pi}{4}\right) - (-\cos(0)) = -\left(\frac{1}{\sqrt{2}}\right) + 1 \] This simplifies to: \[ 1 - \frac{1}{\sqrt{2}} \] ### Final Result Thus, the value of the integral \( \int_{0}^{\frac{\pi}{4}} \sin(x - [x]) \, dx \) is: \[ 1 - \frac{1}{\sqrt{2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Chapter Test 2|60 Videos
  • DEFINITE INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Exercise|147 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA|Exercise Exercise|26 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi) sin^(5) (x/4) dx is equal to

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^( pi/4)sin|x|dx

int_(0)^(pi//4)sin^(2)x dx=

int_(0)^( pi/4)(sin x-cos x)dx

int_(0)^(pi) x sin^(4) x dx is equal to

int_(0)^( pi/4)sin^(4)x*dx

int_(0)^(pi) sin 3x dx

int_(0)^(2pi) (sin x-|sin x|) dx equal to

OBJECTIVE RD SHARMA-DEFINITE INTEGRALS-Chapter Test 1
  1. Let I(n)=int(0)^(pi//2) sin^(n)x dx, nin N. Then

    Text Solution

    |

  2. If f(x)=int(0)^(x) sin^(4)t dt, then f(x+2pi) is equal to

    Text Solution

    |

  3. int(0)^(pi) (1)/(1+3^(cosx)) dx is equal to

    Text Solution

    |

  4. Let int(0)^(a) f(x)dx=lambda and int(0)^(a) f(2a-x)dx=mu. Then, int(...

    Text Solution

    |

  5. The value of int(pi//4)^(3pi//4) (x)/(1+sin x) dx is equal to

    Text Solution

    |

  6. Let I(n)=int(0)^(pi//2) cos^(n)x cos nx dx. Then, I(n):I(n+1) is equal...

    Text Solution

    |

  7. The value of int(-1)^(1) max[2-x,2,1+x] dx is

    Text Solution

    |

  8. int(0)^(pi//4) sin(x-[x]) dx is equalto

    Text Solution

    |

  9. The value of the integral int(-1)^(1) (x-[2x])dx,is

    Text Solution

    |

  10. Let f:R in R be a continuous function such that f(1)=2. If lim(x to 1)...

    Text Solution

    |

  11. Let f:R in R be a continuous function such that f(x) is not identicall...

    Text Solution

    |

  12. Let f(x)=int(0)^(x) |xx-2|dx, ge 0. Then, f'(x) is

    Text Solution

    |

  13. Lt(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0, is equal to (A) k/e (B) e/k (C)...

    Text Solution

    |

  14. Let f(x) be an integrable function defined on [a,b],b gt a gt 0. If I(...

    Text Solution

    |

  15. int(0)^(sqrt(2)) [x^(2)]dx, is

    Text Solution

    |

  16. Let f(x) be a function satisfying f'(x)=f(x) with f(0)=1 and g(x) be a...

    Text Solution

    |

  17. (sum(n=1)^10int(-2n-1)^(-2n)sin^(27)(x)dx+sum(n=1)^10int(2n)^(2n+1)sin...

    Text Solution

    |

  18. If f(y)=e^(y)=e^(y),g(y)=y, y gt 0 and F(t)=int(0)^(t) f(t-y)g(y) dy, ...

    Text Solution

    |

  19. If I(n)=int(0)^(pi//2) x^(n) sin x dx, then I(4)+12I(2) is equal to\

    Text Solution

    |

  20. int(0)^(1) sin{2 tan^(-1)sqrt((1+x)/(1-x))}dx=

    Text Solution

    |