Home
Class 12
MATHS
Let f(x) =cosx sin2x. Then , min (f(x):-...

Let f(x) =cosx sin2x. Then , min `(f(x):-pilexlepi)` is

A

`-9//7`

B

`9//7`

C

`-1//9`

D

`-2//9`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum of the function \( f(x) = \cos x \sin 2x \) in the interval \( -\pi \leq x \leq \pi \), we can follow these steps: ### Step 1: Rewrite the Function We start with the function: \[ f(x) = \cos x \sin 2x \] Using the double angle formula for sine, we can rewrite \( \sin 2x \) as \( 2 \sin x \cos x \): \[ f(x) = \cos x (2 \sin x \cos x) = 2 \cos^2 x \sin x \] ### Step 2: Substitute \( t = \sin x \) Let \( t = \sin x \). Since \( x \) ranges from \( -\pi \) to \( \pi \), \( t \) will range from \( -1 \) to \( 1 \). We can express \( \cos^2 x \) in terms of \( t \): \[ \cos^2 x = 1 - \sin^2 x = 1 - t^2 \] Thus, we can rewrite \( f(x) \) as: \[ f(t) = 2 (1 - t^2) t = 2t - 2t^3 \] ### Step 3: Differentiate the Function To find the critical points, we differentiate \( f(t) \): \[ f'(t) = 2 - 6t^2 \] Setting the derivative equal to zero to find critical points: \[ 2 - 6t^2 = 0 \implies 6t^2 = 2 \implies t^2 = \frac{1}{3} \implies t = \pm \frac{1}{\sqrt{3}} \] ### Step 4: Determine the Nature of Critical Points Next, we find the second derivative to determine whether these points are minima or maxima: \[ f''(t) = -12t \] Evaluating the second derivative at the critical points: 1. For \( t = \frac{1}{\sqrt{3}} \): \[ f''\left(\frac{1}{\sqrt{3}}\right) = -12 \cdot \frac{1}{\sqrt{3}} < 0 \quad (\text{local maximum}) \] 2. For \( t = -\frac{1}{\sqrt{3}} \): \[ f''\left(-\frac{1}{\sqrt{3}}\right) = -12 \cdot \left(-\frac{1}{\sqrt{3}}\right) > 0 \quad (\text{local minimum}) \] ### Step 5: Calculate the Minimum Value Now we calculate the value of \( f(t) \) at \( t = -\frac{1}{\sqrt{3}} \): \[ f\left(-\frac{1}{\sqrt{3}}\right) = 2\left(-\frac{1}{\sqrt{3}}\right) - 2\left(-\frac{1}{\sqrt{3}}\right)^3 \] Calculating each term: \[ = -\frac{2}{\sqrt{3}} + 2\left(-\frac{1}{3\sqrt{3}}\right) = -\frac{2}{\sqrt{3}} + \frac{2}{3\sqrt{3}} = -\frac{6}{3\sqrt{3}} + \frac{2}{3\sqrt{3}} = -\frac{4}{3\sqrt{3}} \] ### Step 6: Final Result Thus, the minimum value of \( f(x) \) in the interval \( -\pi \leq x \leq \pi \) is: \[ \text{Minimum } f(x) = -\frac{4}{3\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • MAXIMA AND MINIMA

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • MATHEMATICAL REASONING

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos
  • MEASURES OF CENTRAL TENDENCY

    OBJECTIVE RD SHARMA|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=cos x sin2x, then

Let f(x)=cos x sin2x then

Let f(x) = |sin x| .Then

Let f (x) = |sin x| then f (x) is

Let f(x)=sin x,x =0 then

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Let f(x)=(sin^(2)pix)/(1+pi^(x)). Then, int[f(x)+f(-x)]dx is equal to

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is (i)pi/2 (ii)pi (iii)(3pi)/2 (iv)2pi

Let f (x) =cos x, g (x)={{:(min {f (t):0 le t le x}",", x in[0","pi]),((sin x)-1"," , x gtpi):} Then

OBJECTIVE RD SHARMA-MAXIMA AND MINIMA -Exercise
  1. The first and second order derivatives of a function f(x) exit at all ...

    Text Solution

    |

  2. The minimum value of 2^(x^2-3)^(3+27) is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  3. Let f(x) =cosx sin2x. Then , min (f(x):-pilexlepi) is

    Text Solution

    |

  4. If f(x)=sin^6x+cos^6x , then which one of the following is false

    Text Solution

    |

  5. The function f(x)=asinx+1/3 sin3x has maximum value at x=pi//3 . The v...

    Text Solution

    |

  6. If ax+b/x >= c for all positive x, where a, b, c > 0, then-

    Text Solution

    |

  7. The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (wh...

    Text Solution

    |

  8. The points of extremum of the function phi(x)=int(1)^(x)e^(-t^2//2)(...

    Text Solution

    |

  9. Let f(x)=int0^x (cost)/tdt Then at x=(2n+1)pi/2 f(x) has

    Text Solution

    |

  10. It is given that at x=1 , the function x^4-62 x^2+a x+9 attains its ma...

    Text Solution

    |

  11. The minimum value of (1+1/(sin^nalpha))(1+1/(cos^nalpha)) is

    Text Solution

    |

  12. The minimum value of (x-a)(x-b) is

    Text Solution

    |

  13. The attitude of a right circular cone of minimum volume circumscired a...

    Text Solution

    |

  14. If (x-a)^(2m) (x-b)^(2n+1), where m and n are positive integers and a...

    Text Solution

    |

  15. If (x-a)^(2m) (x-b)^(2n+1), where m and n are positive integers and a...

    Text Solution

    |

  16. The maximum and minimum values of y=(ax^2+2bx+c)/(Ax^2+2Bx+C) are thes...

    Text Solution

    |

  17. In a A B C ,/B=90^0a n db+a=4. The area of the triangle is maximum wh...

    Text Solution

    |

  18. The function f(x) given by f(x)=|{:(x-1", "x+1", "2x+1),(x+1", ...

    Text Solution

    |

  19. Maximum area of a reactangle which can be inscribed in a circle of a...

    Text Solution

    |

  20. f(x)={{:(3x^(2)+12x-1,-1lexle2),(37-x",",2ltxle3):} Which of the fol...

    Text Solution

    |