Home
Class 12
MATHS
the equation ax^(2)+ 2hxy + by^(2) + ...

the equation `ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0` represents an ellipse , if

A

`Delta =0,h^(2) lt ab`

B

`Delta ne 0, h^(2) lt ab`

C

`Delta ne 0, h^(2) gt ab`

D

`Delta ne 0, h^(2) = ab`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

If the equation ax ^(2) - 6xy +y ^(2) + 2gx + 2fy + x =0 represents a pair of lines whose slopes are m and m^(2), then sum of all possible values of |(3a)/(10)| is "______"

The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a circle if

Knowledge Check

  • IF the equation x^(2) + y^(2) + 2gx + 2fy + 1 = 0 represents a pair of lines, then

    A
    `g^(2) -f^(2) = 0`
    B
    `f^(2) - g^(2) = 1`
    C
    `g^(2) + f^(2) = (1)/(2)`
    D
    `f^(2) - g^(2) = 1`.
  • The equation x^(2) + y^(2) + 2gx + 2fy + c = 0 represents a circle of non-zero radius , if

    A
    ` g^(2) + f^(2) gt c `
    B
    `g^(2) + f^(2) lt c `
    C
    `g^(2) gt f^(2) + c `
    D
    `g^(2) lt f^(2) + c `
  • If the equation ax^(2)+hxy+by^(2)+4gx+6fy+4c=0 represents a pair of lines then

    A
    `4abc+4fgh=4.5af^(2)+4bg^(2)+h^(2)`
    B
    `4abc+6fgh-9af^(2)-4bg^(2)-ch^(2)`
    C
    `4abc+2fgh-9af^(2)+2bg^(2)+h^(2)`
    D
    `4abc+12fgh-9af^(2)+4bg^(2)+2h^(2)`
  • Similar Questions

    Explore conceptually related problems

    If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a pair of parallel lines, then

    If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a pair of parallel lines, then

    If the equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 represents a pair of parallel lines, then

    The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 repersents a hyperbola if

    The equation ax^(2)+2hxy+by^(2)+2gx+2fy+c=0 repersents a rectangular hyperbola if