Home
Class 12
MATHS
An ellipse is described by using an endl...

An ellipse is described by using an endless string which is passed over two pins. If the axes are `6 cm` and `4 cm`, the length of the string and distance between the pins are .........

A

`6, 2 sqrt5`

B

`6, sqrt5`

C

`4, 2 sqrt5`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|7 Videos
  • DIFFERENTIATION

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|20 Videos

Similar Questions

Explore conceptually related problems

An ellipse is described by using an endless string which is passed over two pins.If the axes are 6cm and 4cm ,the length of the string and distance between the pins are ......

If the radii of two circles be 8 cm and 4 cm and the length of the transverse common tangent be 13 cm, then find the distance between the two centers is

A string fixed at both ends has consecutive standing wave modes for which the distance between adjacent nodes are 18 cm and 16 cm respectively. The length of the string is -

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. If one end of the string is at x = 0 , positions of the nodes can be described as

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. Amplitude of simple harmonic motion of a point on the string that is located at x = 1.8 cm will be

Consider a standing wave formed on a string . It results due to the superposition of two waves travelling in opposite directions . The waves are travelling along the length of the string in the x - direction and displacements of elements on the string are along the y - direction . Individual equations of the two waves can be expressed as Y_(1) = 6 (cm) sin [ 5 (rad//cm) x - 4 ( rad//s)t] Y_(2) = 6(cm) sin [ 5 (rad//cm)x + 4 (rad//s)t] Here x and y are in cm . Answer the following questions. Maximum value of the y - positions coordinate in the simple harmonic motion of an element of the string that is located at an antinode will be

Two masses 2 kg and 4 kg are connected at two ends of light inextensible string passing over a frictionless pulley . If the masses are released , then find the accelaration of the masses and the tension in the string .

If the lengths of the two parallel sides of a trapezium are 5 cm and 7 cm and the distance between these parallel sides is 4cm. Find its area (in cm^(2) ).

Two masses 2 kg and 4 kg are connected at the two ends of light inextensible string passing over a frictionless pulley. If the masses are released, then find the acceleration of the masses and the tension in the string.

OBJECTIVE RD SHARMA-ELLIPSE-Exercise
  1. If C is the centre of the ellipse 9x^(2) + 16y^(2) = 144 and S is one ...

    Text Solution

    |

  2. In an ellipse the distance between the foci is 8 and the distance betw...

    Text Solution

    |

  3. The centre of the ellipse 4x^(2) + 9y^(2) + 16x - 18y - 11 = 0 is

    Text Solution

    |

  4. If P is any point on the ellipse 9x^(2) + 36y^(2) = 324 whose foci are...

    Text Solution

    |

  5. An ellipse is described by using an endless string which is passed ove...

    Text Solution

    |

  6. Two perpendicular tangents drawn to the ellipse (x^2)/(25)+(y^2)/(16)=...

    Text Solution

    |

  7. The distance of the point 'theta' on the ellipse x^(2)/a^(2) + y^(2)/b...

    Text Solution

    |

  8. If y = mx + c is a tangent to the ellipse x^(2) + 2y^(2) = 6, them c^(...

    Text Solution

    |

  9. Let P be a variable point on the ellipse x^(2)/25 + y^(2)/16 = 1 with ...

    Text Solution

    |

  10. The ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 and the straight line y=mx+c int...

    Text Solution

    |

  11. Let E be the ellipse x^(2)/9 + y^(2)/4 = 1 and C be the circle x^(2) +...

    Text Solution

    |

  12. Equation of the ellipse with accentricity 1/2 and foci at (pm 1, 0), i...

    Text Solution

    |

  13. If B and B' are the ends of minor axis and S and S' are the foci of th...

    Text Solution

    |

  14. The length of the axes of the conic 9x^(2) + 4y^(2) -6x+ 4y + 1 = 0, a...

    Text Solution

    |

  15. If the normal at any given point P on the ellipse x^(2)/a^(2) + y^(2)/...

    Text Solution

    |

  16. If the curves x^(2) + 4y^(2) = 4, x^(2) + a^(2) y^(2) = a^(2) for suit...

    Text Solution

    |

  17. If P(theta),Q(theta+pi/2) are two points on the ellipse x^2/a^2+y^2/b^...

    Text Solution

    |

  18. An ellipse has point (1,-1)a n d(2,-1) as its foci and x+y-5=0 as one ...

    Text Solution

    |

  19. If the length of the semi-major axis of an ellipse is 68 and e = 1/2, ...

    Text Solution

    |

  20. If the tangent at the point (4 cos theta, (16)/(sqrt(11)) sin theta) t...

    Text Solution

    |