Home
Class 12
MATHS
If i=sqrt(-1), then {i^(n)+i^(-n), n in ...

If `i=sqrt(-1)`, then `{i^(n)+i^(-n), n in Z}` is equal to

A

`{0,2}`

B

`{0,-2}`

C

`{0,-2,2}`

D

`{0,-2i}`

Text Solution

Verified by Experts

The correct Answer is:
C

We have the folloiwng case:
Case 1: When n=4m, `m in Z`
In this case, we have
`i^(n)=i^(4)=(i^(4))^(m)=1` and `i^(-n)=1/i^(n)=1/1=1`
`therefore i^(n)+i^(-n)=2`
Case 2: When n=4m+1, `m in Z`
In this case, we have
`i^(n)=i^(4m+1)=(i^(4))^(m)i^(1)=i` and `i^(-n)=1/i^(n)=1/i=-i`
`therefore i^(n)+i^(-n)=i=i=0`
Case III: When `n=4m+2, m in Z`
In this case, we have
`i^(n)=i^(4m+2)=(i^(4))^(m)i^(2)=i^(2)=-1`
`therefore i^(n)+i^(-n)=(-1)+(-1)=-2`.
Case IV: When `n=4m+3, m in Z`
In this case , we have
`i^(n)=i^(4m+3)=(i^(4))^(m)i^(3)=i^(3)-i` and `i^(-n)=1/i^(n)=1/i^(3)=i`
`therefore i^(n)+i^(-n)=(-i)+(i)=0`.
Hence, `S={-2,0,2}`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

If A=[[i,0],[0,i]];i=sqrt(-1), then A^(n) is equal to

If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

if i=sqrt(-)1, the number of values of i^(n)+i^(-n) for different n varepsilon I, is:

If i=sqrt(-1), the number of values of i^(-n) for a different n inI is

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If i=sqrt(-1), then {i^(n)+i^(-n), n in Z} is equal to

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |