Home
Class 12
MATHS
If z(1),z(2) and z(3) be unimodular comp...

If `z_(1),z_(2)` and `z_(3)` be unimodular complex numbers, then the maximum value of `|z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2)`, is

A

6

B

9

C

12

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) where \( z_1, z_2, z_3 \) are unimodular complex numbers (i.e., \( |z_1| = |z_2| = |z_3| = 1 \)), we can follow these steps: ### Step 1: Understanding Unimodular Complex Numbers Unimodular complex numbers lie on the unit circle in the complex plane. Therefore, we can express them as: - \( z_1 = e^{i\theta_1} \) - \( z_2 = e^{i\theta_2} \) - \( z_3 = e^{i\theta_3} \) where \( \theta_1, \theta_2, \theta_3 \) are angles in radians. ### Step 2: Expressing the Distances We need to compute the distances: - \( |z_1 - z_2|^2 = |e^{i\theta_1} - e^{i\theta_2}|^2 \) - \( |z_2 - z_3|^2 = |e^{i\theta_2} - e^{i\theta_3}|^2 \) - \( |z_3 - z_1|^2 = |e^{i\theta_3} - e^{i\theta_1}|^2 \) Using the formula \( |a - b|^2 = (a - b)(\overline{a - b}) \), we can rewrite these distances: \[ |z_1 - z_2|^2 = |e^{i\theta_1} - e^{i\theta_2}|^2 = 2 - 2\cos(\theta_1 - \theta_2) \] \[ |z_2 - z_3|^2 = |e^{i\theta_2} - e^{i\theta_3}|^2 = 2 - 2\cos(\theta_2 - \theta_3) \] \[ |z_3 - z_1|^2 = |e^{i\theta_3} - e^{i\theta_1}|^2 = 2 - 2\cos(\theta_3 - \theta_1) \] ### Step 3: Summing the Distances Now we can sum these expressions: \[ |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 = (2 - 2\cos(\theta_1 - \theta_2)) + (2 - 2\cos(\theta_2 - \theta_3)) + (2 - 2\cos(\theta_3 - \theta_1)) \] This simplifies to: \[ = 6 - 2(\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1)) \] ### Step 4: Maximizing the Expression To maximize the expression \( 6 - 2(\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1)) \), we need to minimize \( \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \). The minimum value of \( \cos(x) \) is -1. Therefore, the minimum value of the sum can be achieved when the angles are spaced evenly around the unit circle, leading to: \[ \cos(\theta_1 - \theta_2) = \cos(\theta_2 - \theta_3) = \cos(\theta_3 - \theta_1) = -\frac{1}{2} \] This gives: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) = -\frac{3}{2} \] ### Step 5: Final Calculation Substituting back, we find: \[ 6 - 2\left(-\frac{3}{2}\right) = 6 + 3 = 9 \] ### Conclusion Thus, the maximum value of \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) is \( \boxed{9} \).

To find the maximum value of the expression \( |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 \) where \( z_1, z_2, z_3 \) are unimodular complex numbers (i.e., \( |z_1| = |z_2| = |z_3| = 1 \)), we can follow these steps: ### Step 1: Understanding Unimodular Complex Numbers Unimodular complex numbers lie on the unit circle in the complex plane. Therefore, we can express them as: - \( z_1 = e^{i\theta_1} \) - \( z_2 = e^{i\theta_2} \) - \( z_3 = e^{i\theta_3} \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

If Z_(1),Z_(2) are two non-zero complex numbers, then the maximum value of (Z_(1)bar(Z)_(2)+Z_(2)bar(Z)_(1))/(2|Z_(1)||Z_(2)|) is

If z_(1) and z_(2) are unimodular complex numbers that satisfy z_(1)^(2)+z_(2)^(2)=4, then (z_(1)+bar(z)_(1))^(2)+(z_(2)+bar(z)_(2))^(2) equals to

If z_1,z_2,z_3 are three complex numbers such that |z_1|=|z_2|=|z_3|=1 , find the maximum value of |z_1-z_2|^2+|z_2-z_3|^2+|z_3+z_1|^2

If z_(1),z_(2) and z_(3),z_(4) are two pairs of conjugate complex numbers,hen find the value of arg(z_(1)/z_(4))+arg(z_(2)/z_(3))*a

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is :

Match the following : {:("Column-I" ," Column-II"),("(A) The value of " underset(k=1)overset(2007)sum (sin""(2kpi)/9 - icos""(2kpi)/9) " is" , " (p) -1"),("(B) If " z_(1)","z_(2) and z_(3) " are unimodular complex numbers such that " |z_(1)+z_(2)+z_(3)|=1 " then " |1/z_(1)+1/z_(2) + 1/z_(3)| " is equal to " , " (q) 2 "),("(C) If the complex numbers " z_(1)"," z_(2) and z_(3) " represent the vetices of an equilateral triangle such that " |z_(1)|=|z_(2)|=|z_(3)| " then " (z_(1) +z_(2) +z_(3)) -1 " is equal to " , " (r) 1"),("(D) If " alpha " is an imaginary fifth root of unity , then " 4log_(4)| 1+alpha +alpha^(2) +alpha^(3) -1/alpha| " is " , " (s) 0"):}

If z_(1),z_(2),z_(3) are distinct nonzero complex numbers and a,b,c in R^(+) such that (a)/(|z_(1)-z_(2)|)=(b)/(|z_(2)-z_(3)|)=(c)/(|z_(3)-z_(1)|) Then find the value of (a^(2))/(z_(1)-z_(2))+(b^(2))/(z_(2)-z_(3))+(c^(2))/(z_(3)-z_(1))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If z(1),z(2) and z(3) be unimodular complex numbers, then the maximum ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |