Home
Class 12
MATHS
Let z=x+i y be a complex number where xa...

Let `z=x+i y` be a complex number where `xa n dy` are integers. Then, the area of the rectangle whose vertices are the roots of the equation `z z ^3+ z z^3=350` is 48 (b) 32 (c) 40 (d) 80

Text Solution

Verified by Experts

We have,
`zbarz^(3)+barzz^(3)=350`
`rArr |z^(2)|barz^(2)+(barzz)z^(2)=350`
`rArr 2(x^(2)+y^(2))(x^(2)-y^(2))=350`, where `z=x+iy`
`rArr x^(2)=y^(2)=25` and `x^(2)-y^(2)=7`
`rArr x=+4` and `y=+-3`
Hence, the verticles of the rectangle are `A(-4,-3), B(4,-3), C(4,3)` and D(-4,3).
`therefore` Area of the rectangle ABCD = `AB xx CD = 8 xx 6`
=48 sq. units.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let z=x+iy be a complex number where x and y are integers.Then,the area of the rectangle whose vertices are the roots of the equation zz+zz^(3)=350 is 48 (b) 32 (c) 40 (d) 80

Find the area of the triangle whose vertices represent the three roots of the complex equation z^4 = (z+1)^4 .

The roots of the equation z^(n)=(z+3)^(n)

If z is a complex number, then the area of the triangle (in sq. units) whose vertices are the roots of the equation z^(3)+iz^(2)+2i=0 is equal to (where, i^(2)=-1 )

If z is a complex number such that |z|=2 , then the area (in sq. units) of the triangle whose vertices are given by z, -iz and iz-z is equal to

Find the circumstance of the triangle whose vertices are given by the complex numbers z_(1),z_(2) and z_(3) .

For a complex number z, the product of the real parts of the roots of the equation z^(2)-z=5-5i is (where, i=sqrt(-1) )

Let z be a complex number satisfying the equation (z^(3)+3)^(2)=-16, then find the value of |z|

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. Let z=x+i y be a complex number where xa n dy are integers. Then, the ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |