Home
Class 12
MATHS
If z=x+iy such that |z+1|=|z-1| and arg...

If `z=x+iy` such that `|z+1|=|z-1|` and `arg((z-1)/(z+1))=pi/4` then

A

`x^(2)-y^(2)-2x-1=0`

B

`x^(2)+y^(2)-2x-1=0`

C

`x^(2)+y^(2)-2y-1=0`

D

`x^(2)+y^(2)+2x-1=0`

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`(z-1)/(z+1) = ((x-1)+iy)/((x+1)+iy)=(x^(2)+y^(2)-1)/((x+1)^(2)+y^(2))`
`therefore "arg"(z-1)/(z+1)=pi/4`
`rArr tan^(-1)(2y)/(x^(2)+y^(2)-1)=pi/4`
`rArr (2y)/(x^(2)+y^(2)-1) = tanpi/4 rArr x^(2)+y^(2)-2y-1=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If z=x +i y such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 , then find zdot

Let z1 and z2 be two complex numbers such that |z1|=|z2| and arg(z1)+arg(z2)=pi then which of the following is correct?

If z_(1)andz_(2) are two complex numbers such that |z_(1)|=|z_(2)| and arg(z_(1))+arg(z_(2))=pi, then show that z_(1),=-(z)_(2)

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If z_(1) and z_(2) are two non-zero complex number such that |z_(1)z_(2)|=2 and arg(z_(1))-arg(z_(2))=(pi)/(2) ,then the value of 3iz_(1)z_(2)

If z_(1) and z_(2) both satisfy the relation z+bar(z)=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4) then Im(z_(1)+z_(2)) equals

If z_(1)andz_(2) both satisfy z+ddot z=2|z-1| and arg(z_(1)-z_(2))=(pi)/(4), then find Im(z_(1)+z_(2))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=pi/4 then

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |