Home
Class 12
MATHS
If z is a complex number of unit modulus...

If z is a complex number of unit modulus and argument `theta`, then the real part of `(z(1-barz))/(barz(1+z))`, is

A

`2cos^(2)(theta/2)`

B

`1-cos(theta/2)`

C

`1+sin(pi/2)`

D

`-2sin^(2)(theta/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the real part of the expression \(\frac{z(1 - \bar{z})}{\bar{z}(1 + z)}\) where \(z\) is a complex number of unit modulus and argument \(\theta\), we can follow these steps: ### Step 1: Express \(z\) in terms of \(\theta\) Since \(z\) is a complex number of unit modulus, we can express it as: \[ z = e^{i\theta} = \cos \theta + i \sin \theta \] The conjugate of \(z\) is: \[ \bar{z} = e^{-i\theta} = \cos \theta - i \sin \theta \] ### Step 2: Substitute \(z\) and \(\bar{z}\) into the expression Substituting \(z\) and \(\bar{z}\) into the expression, we have: \[ \frac{z(1 - \bar{z})}{\bar{z}(1 + z)} = \frac{e^{i\theta}(1 - e^{-i\theta})}{e^{-i\theta}(1 + e^{i\theta})} \] ### Step 3: Simplify the numerator and denominator Calculating the numerator: \[ 1 - \bar{z} = 1 - (\cos \theta - i \sin \theta) = 1 - \cos \theta + i \sin \theta \] Thus, the numerator becomes: \[ z(1 - \bar{z}) = e^{i\theta}(1 - \cos \theta + i \sin \theta) = (\cos \theta + i \sin \theta)(1 - \cos \theta + i \sin \theta) \] Calculating the denominator: \[ 1 + z = 1 + (\cos \theta + i \sin \theta) = 1 + \cos \theta + i \sin \theta \] Thus, the denominator becomes: \[ \bar{z}(1 + z) = e^{-i\theta}(1 + \cos \theta + i \sin \theta) = (\cos \theta - i \sin \theta)(1 + \cos \theta + i \sin \theta) \] ### Step 4: Expand both the numerator and denominator Expanding the numerator: \[ (\cos \theta + i \sin \theta)(1 - \cos \theta + i \sin \theta) = \cos \theta(1 - \cos \theta) + i \cos \theta \sin \theta + i \sin \theta(1 - \cos \theta) - \sin^2 \theta \] Combining the real and imaginary parts: \[ = \cos \theta(1 - \cos \theta) - \sin^2 \theta + i(\cos \theta \sin \theta + \sin \theta(1 - \cos \theta)) \] Expanding the denominator: \[ (\cos \theta - i \sin \theta)(1 + \cos \theta + i \sin \theta) = \cos \theta(1 + \cos \theta) + i \cos \theta \sin \theta - i \sin \theta(1 + \cos \theta) - \sin^2 \theta \] Combining the real and imaginary parts: \[ = \cos \theta(1 + \cos \theta) - \sin^2 \theta + i(\cos \theta \sin \theta - \sin \theta(1 + \cos \theta)) \] ### Step 5: Formulate the final expression Now we have: \[ \frac{\text{Numerator}}{\text{Denominator}} = \frac{\text{Real part} + i \text{Imaginary part}}{\text{Real part} + i \text{Imaginary part}} \] ### Step 6: Find the real part To find the real part of the expression, we can use the fact that the real part of a complex fraction \(\frac{a + bi}{c + di}\) can be computed using: \[ \text{Re}\left(\frac{a + bi}{c + di}\right) = \frac{ac + bd}{c^2 + d^2} \] where \(a\), \(b\), \(c\), and \(d\) are the respective real and imaginary parts of the numerator and denominator. ### Final Result After simplification, we find that the real part of the expression is: \[ -2 \sin^2\left(\frac{\theta}{2}\right) \]

To find the real part of the expression \(\frac{z(1 - \bar{z})}{\bar{z}(1 + z)}\) where \(z\) is a complex number of unit modulus and argument \(\theta\), we can follow these steps: ### Step 1: Express \(z\) in terms of \(\theta\) Since \(z\) is a complex number of unit modulus, we can express it as: \[ z = e^{i\theta} = \cos \theta + i \sin \theta \] The conjugate of \(z\) is: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number of unit modulus and argument theta , then arg((1+z)/(1+bar(z))) equals to

If z is a complex number of unit modulus and argument q, then arg ((1+z)/(1+bar(z))) equal (1)(pi)/(2)-theta (2) theta(3)pi-theta(4)-theta

Ifa complex number z has modulus 1 and argument (pi)/(3), then z^(2)+z

Find the complex number z if z^2+barz =0

Find the complex number z if zbarz = 2 and z + barz=2

Let z be a complex number having argument greater than 0 but less than 'pi/2' and satisfying equation (z-5i)(barz+5i)=25 then cot theta-10/z is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If z is a complex number of unit modulus and argument theta, then the ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |