Home
Class 12
MATHS
Let z(1),z(2) and z(3) be three points o...

Let `z_(1),z_(2)` and `z_(3)` be three points on `|z|=1`. If `theta_(1), theta_(2)` and `theta_(3)` be the arguments of `z_(1),z_(2),z_(3)` respectively, then `cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))`

A

`ge-3/2`

B

`le -3/2`

C

`ge 3/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \) given that \( z_1, z_2, z_3 \) are points on the unit circle, meaning \( |z_1| = |z_2| = |z_3| = 1 \). ### Step-by-Step Solution: 1. **Understanding the Points on the Unit Circle**: Since \( z_1, z_2, z_3 \) lie on the unit circle, we can express them in terms of their arguments: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2}, \quad z_3 = e^{i\theta_3} \] 2. **Using the Cosine Difference Identity**: We can use the cosine difference identity: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Therefore, we can rewrite the expression: \[ \cos(\theta_1 - \theta_2) = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \] \[ \cos(\theta_2 - \theta_3) = \cos \theta_2 \cos \theta_3 + \sin \theta_2 \sin \theta_3 \] \[ \cos(\theta_3 - \theta_1) = \cos \theta_3 \cos \theta_1 + \sin \theta_3 \sin \theta_1 \] 3. **Combining the Cosine Terms**: Now, we can combine these: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1 = (\cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2) + (\cos \theta_2 \cos \theta_3 + \sin \theta_2 \sin \theta_3) + (\cos \theta_3 \cos \theta_1 + \sin \theta_3 \sin \theta_1) \] 4. **Using the Properties of Complex Numbers**: Since \( |z_1| = |z_2| = |z_3| = 1 \), we know: \[ z_1 + z_2 + z_3 = e^{i\theta_1} + e^{i\theta_2} + e^{i\theta_3} \] The modulus of this sum is bounded. By the triangle inequality, we have: \[ |z_1 + z_2 + z_3| \leq |z_1| + |z_2| + |z_3| = 3 \] The minimum value occurs when the points are evenly spaced on the circle. 5. **Applying the Cauchy-Schwarz Inequality**: We can apply the Cauchy-Schwarz inequality to the terms: \[ (1^2 + 1^2 + 1^2)(\cos^2(\theta_1 - \theta_2) + \cos^2(\theta_2 - \theta_3) + \cos^2(\theta_3 - \theta_1) \geq (\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1))^2 \] This gives us a lower bound. 6. **Final Result**: After evaluating, we find: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \geq -\frac{3}{2} \] Thus, the final answer is: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \geq -\frac{3}{2} \]

To solve the problem, we need to evaluate the expression \( \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \) given that \( z_1, z_2, z_3 \) are points on the unit circle, meaning \( |z_1| = |z_2| = |z_3| = 1 \). ### Step-by-Step Solution: 1. **Understanding the Points on the Unit Circle**: Since \( z_1, z_2, z_3 \) lie on the unit circle, we can express them in terms of their arguments: \[ z_1 = e^{i\theta_1}, \quad z_2 = e^{i\theta_2}, \quad z_3 = e^{i\theta_3} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If the line vec(OR) makes angles theta_(1),theta_(2),theta_(3) with the planes XOY, YOZ, ZOX respectively , then cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3) is equal to

If sin(theta)_(1)+sin(theta)_(2)+sin(theta)_(3)=1 then cos(theta)_(1)+cos(theta)_(2)+cos(theta)_(3)=

If cos theta_(1)+cos theta_(2)+cos theta_(3)=-3 where theta_(1),theta_(2),theta_(3)in[0,2 pi] then value sin((theta_(1))/(2))+sin((theta_(2))/(2))+sin((theta_(3))/(2)) is

A line makes angle theta_(1),theta_(2),theta_(3) and theta_(4) with the diagonals of cube.Show that cos^(2)theta_(1)+cos^(2)theta_(2)+cos^(2)theta_(3)+cos^(2)theta_(4)=(4)/(3)

If cos theta_(1)+cos theta_(2)+cos theta_(3)=-3 then the value of sin((theta_(1))/(2))+sin((theta_(2))/(2))+sin((theta_(3))/(2))=

If theta_(1),theta_(2),theta_(3)....,theta_(n) are in A.P. then (sin theta_(1)+sin theta_(2)+...+sin theta_(n))/(cos theta_(1)+cos theta_(2)+...+cos theta_(n))=

z_(1)bar(z)_(2)+bar(z)_(1)z_(2)=2|z_(1)||z_(2)|cos(theta_(1)-theta_(2))

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

(cos(theta_(1)-theta_(2)))/(cos(theta_(1)+theta_(2)))+(cos(theta_(3)+theta_(4)))/(cos(theta_(3)-theta_(4)))=0then(tan theta_(1)*tan theta_(2))/(cot theta_(2)*cot theta_(4))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. Let z(1),z(2) and z(3) be three points on |z|=1. If theta(1), theta(2)...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |