Home
Class 12
MATHS
If omega = z/[z-(1/3)i] and |omega| = 1,...

If `omega = z/[z-(1/3)i]` and `|omega| = 1`, then find the locus of z.

A

a parabola

B

a straight line

C

a circle

D

an ellipse

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`omega=z/(z-i/3)` and `|omega|=1`
`rArr |z/(z-i/3)|=1`
`rArr |z|/|z-i/3|=1`
`rArr |z|=|z-(0+1/3i)|=1`
`rArr` z lies on the perpendicular bisector of the line segment joining O(0,0) and `A(0,1//3)`, which is a straight line.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If |z-3i|=|z+3i| , then find the locus of z.

If w=(z)/(z-((1)/(3))i) and |w|=1, then find the locus of z and |w|=1, then find the

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If omega is any complex number such that z omega = |z|^2 and |z - barz| + |omega + bar(omega)| = 4 then as omega varies, then the area bounded by the locus of z is

If omega is any complex number such that z omega=|z|^(2) and |z-barz|+|omega+baromega|=4 , then as omega varies, then the area bounded by the locus of z is

If complex number z lies on the curve |z-(-1+i)|=1, then find the locus of the complex number w=(z+i)/(1-i),i=sqrt(-1)1

If z is a complex number satisfying the equation |z-(1+i)|^(2)=2 and omega=(2)/(z), then the locus traced by omega' in the complex plane is

Let z_(1) and z_(2) be two given complex numbers. The locus of z such that {:("Column -I", " Column -II"),( "(A) " |z-z_(1)|+|z-z_(2)| = " constant =k, where " k ne|z_(1)-z_(2)|, " (p) Circle with " z_(1) and z_(2) " as the vertices of diameter"),("(B)" |z-z_(1)|- |z-z_(2)|= " k where " k ne |z_(1)-z_(2)| ," (q) Circle "),("(C)"arg((z-z_(1))/(z-z_(2)))=+- pi/2 , " (r) Hyperbola "),("(D) If "omega" lies on " |omega| = 1 " then " 2007/omega " lies on " , " (s) Ellipse"):}

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If omega = z/[z-(1/3)i] and |omega| = 1, then find the locus of z.

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |