Home
Class 12
MATHS
A(z(1)) and B(z(2)) are two given points...

`A(z_(1))` and `B(z_(2))` are two given points in the complex plane. The locus of a point P(z) in the complex plane satisfying `|z-z_(1)|-|z-z_(2)|`='|z1-z2 |, is

A

a circle

B

an ellipse

C

a hyperbola

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

We have,
`|z-z_(1)|-|z-z_(2)|=|z_(1)-z_(2)|`
`rArr` PA-PB=AB
`rArr` P lies on the ray originating from B and is along BA.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The point z in the complex plane satisfying |z+2|-|z-2|=+3 lies on

If A(z_(1)) and B(z_(2)) are two fixed points in the Argand plane the locus of point P(z) satisfying |z-z_(1)|+|z-z_(2)|=|z_(1)-z_(2)| , is

Points z in the complex plane satisfying "Re"(z+1)^(2)=|z|^(2)+1 lie on

A(z_(1)) and B(z_(2)) are two fixed points in the Argand plane and a point P(z) moves in the plane such that |z-z_(1)|+|z-z_(2)| = Constant (ne|z_(1)-z_(2)|) , then the locus of P, is

The locus of a point z in complex plane satisfying the condition arg((z-2)/(z+2))=(pi)/(2) is

If A(z_(1)) and A(z_(2)) are two fixed points in the Argand plane and a point P(z) moves in the Argand plane in such a way that |z-z_(1)|=|z-z_(2)| , then the locus of P, is

On the complex plane locus of a point z satisfying the inequality 2<=|z-1|<3 denotes

A(z_(1)) and B(z_(2)) are two fixed points in the Argand plane and P(z) is variable point satisfying |z-z_(1)|=k|z-z_(2)| , where k gt 0 and k ne 1 . The locus of is

The locus of the point w=Re(z)+(1)/(z) where |z|=3 ,in complex plane is :

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. A(z(1)) and B(z(2)) are two given points in the complex plane. The loc...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |