Home
Class 12
MATHS
The radius of the circle |(z-i)/(z+i)|=3...

The radius of the circle `|(z-i)/(z+i)|=3`, is

A

`5/4`

B

`3/4`

C

`1/4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius of the circle defined by the equation \( \left| \frac{z - i}{z + i} \right| = 3 \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \left| \frac{z - i}{z + i} \right| = 3 \] This can be rewritten as: \[ \left| z - i \right| = 3 \left| z + i \right| \] ### Step 2: Let \( z = x + iy \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we can express the magnitudes: \[ \left| z - i \right| = \left| x + (y - 1)i \right| = \sqrt{x^2 + (y - 1)^2} \] \[ \left| z + i \right| = \left| x + (y + 1)i \right| = \sqrt{x^2 + (y + 1)^2} \] ### Step 3: Substitute into the Equation Substituting these into our equation gives: \[ \sqrt{x^2 + (y - 1)^2} = 3 \sqrt{x^2 + (y + 1)^2} \] ### Step 4: Square Both Sides Now, we square both sides to eliminate the square roots: \[ x^2 + (y - 1)^2 = 9(x^2 + (y + 1)^2) \] ### Step 5: Expand Both Sides Expanding both sides: \[ x^2 + (y^2 - 2y + 1) = 9(x^2 + (y^2 + 2y + 1)) \] This simplifies to: \[ x^2 + y^2 - 2y + 1 = 9x^2 + 9y^2 + 18y + 9 \] ### Step 6: Rearrange the Equation Rearranging gives: \[ x^2 + y^2 - 2y + 1 - 9x^2 - 9y^2 - 18y - 9 = 0 \] Combining like terms: \[ -8x^2 - 8y^2 + 16y - 8 = 0 \] ### Step 7: Divide by -8 Dividing the entire equation by -8: \[ x^2 + y^2 - 2y + 1 = 0 \] ### Step 8: Complete the Square To complete the square for the \( y \) terms: \[ x^2 + (y^2 - 2y + 1) = 0 \] This can be rewritten as: \[ x^2 + (y - 1)^2 = 0 \] ### Step 9: Identify the Circle The equation \( x^2 + (y - 1)^2 = 0 \) represents a circle with center at \( (0, 1) \) and radius \( 0 \). ### Step 10: Conclusion Thus, the radius of the circle is: \[ \text{Radius} = 0 \]

To find the radius of the circle defined by the equation \( \left| \frac{z - i}{z + i} \right| = 3 \), we can follow these steps: ### Step 1: Rewrite the Equation We start with the equation: \[ \left| \frac{z - i}{z + i} \right| = 3 \] This can be rewritten as: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The radius of the circle |(z-i)/(z+i)|=5 is given by

Radius of the circle |(z-1)/(z-3i)|=sqrt(2)

If z is a complex number then radius of the circle zbar(z)-2(1+i)z-2(1-i)bar(z)-1=0 is

The radius of the circle x^(2)+y^(2)+z^(2)=49,2x+3y-z-5sqrt(14)=0i

Find the center and radius of the circle 2zbarz+(3-i)z+(3+i)z-7=0," where " i=sqrt(-1).

The area of the circle (izbar(z))+(3+4i)z-(3-4i)bar(z)+9i=0 is.....

Radius of the circle z bar(z) + (2 + 5.5 i) z + (2-5.5 i) bar(z) + 4 = 0 is ___________

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. The radius of the circle |(z-i)/(z+i)|=3, is

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |