Home
Class 12
MATHS
If z is a complex number having least ab...

If z is a complex number having least absolute value and `|z-2+2i|=|,` then `z=`

A

`(2-1/sqrt(2))(1-i)`

B

`(2-1/sqrt(2))(1+i)`

C

`(2+1/sqrt(2))(1-i)`

D

`(2+1/sqrt(2))(1+i)`

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`|z-2+2i|=1`
`rArr |z-(2-2i)|=1`
`rArr` z lies on a circle having center at `(2,-2)` and radius 1.
It is evident from the figure that the required complex number z s given by the point P. We find that OP makes an angle `pi//4` with OX and
OP=OC-CP = `sqrt(2^(2)+2^(2))-1=2sqrt(2)-1`

So, coordinate of P are
`(2sqrt(2)-1)cospi/4, -(2sqrt(2)-1)sinpi/4)`
i.e., `(2-1/sqrt(2)), -(2-1/sqrt(2))`
Hence, `z=(2-1/sqrt(2))+{-(2-1/sqrt(2))}i=(2-1/sqrt(2))1=i`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number having least absolute value and |z-2+2i|=1 ,then z= (2-1//sqrt(2))(1-i) b. (2-1//sqrt(2))(1+i) c. (2+1//sqrt(2))(1-i)"" d. (2+1//sqrt(2))(1+i)

For any complex number z find the minimum value of |z|+|z-2i|

Find the complex number Z ,the greatest in absolute value which satisfies |z-2+2i|=1

If z is a complex number satisfying the equation |z+i|+|z-i|=8, on the complex plane thenmaximum value of |z| is

" If "z" is a complex number such that "|z|=2" ,Then the maximum value of "|z-2+3i|"

If z is a complex number such that z+i|z|=ibar(z)+1 ,then |z| is -

if z is a complex number such that z+|z|=8+12i, then the value of |z^(2)| is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If z is a complex number having least absolute value and |z-2+2i|=|, ...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |