Home
Class 12
MATHS
If alpha is an n^(th) roots of unity, t...

If `alpha` is an `n^(th)` roots of unity, then `1+2alpha+3alpha^(2)+……..+nalpha^(n-1)` equals

A

`n/(1-alpha)`

B

`-n/(1-alpha)`

C

`-n/(1-alpha)^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( S = 1 + 2\alpha + 3\alpha^2 + \ldots + n\alpha^{n-1} \), where \( \alpha \) is an \( n^{th} \) root of unity. ### Step-by-step Solution: 1. **Define the Sum**: Let \( S = 1 + 2\alpha + 3\alpha^2 + \ldots + n\alpha^{n-1} \). 2. **Multiply by \( \alpha \)**: Multiply both sides of the equation by \( \alpha \): \[ \alpha S = \alpha + 2\alpha^2 + 3\alpha^3 + \ldots + n\alpha^n \] Note that since \( \alpha^n = 1 \), we can replace \( n\alpha^n \) with \( n \). 3. **Rearranging the Terms**: Now we can write: \[ \alpha S = \alpha + 2\alpha^2 + 3\alpha^3 + \ldots + n \] Rearranging gives: \[ \alpha S = n + \sum_{k=1}^{n-1} k\alpha^{k+1} \] 4. **Subtracting the Two Equations**: Now, subtract \( \alpha S \) from \( S \): \[ S - \alpha S = 1 + (2\alpha - \alpha) + (3\alpha^2 - 2\alpha^2) + \ldots + (n\alpha^{n-1} - n\alpha^n) \] This simplifies to: \[ S(1 - \alpha) = 1 + \alpha + 2\alpha^2 + \ldots + (n-1)\alpha^{n-1} \] 5. **Using the Formula for the Sum of a Geometric Series**: The right-hand side can be recognized as a geometric series. The sum of a geometric series is given by: \[ \sum_{k=0}^{n-1} x^k = \frac{1 - x^n}{1 - x} \] Here, we can use this to find the sum of the series. 6. **Final Expression**: Thus, we have: \[ S(1 - \alpha) = \frac{1 - \alpha^n}{(1 - \alpha)^2} \] Since \( \alpha^n = 1 \) (as \( \alpha \) is an \( n^{th} \) root of unity), we can simplify this to: \[ S(1 - \alpha) = \frac{1 - 1}{(1 - \alpha)^2} = 0 \] 7. **Solving for \( S \)**: Therefore, we find: \[ S = \frac{n}{1 - \alpha} \] ### Conclusion: The final result is: \[ S = \frac{n}{1 - \alpha} \]

To solve the problem, we need to find the value of the expression \( S = 1 + 2\alpha + 3\alpha^2 + \ldots + n\alpha^{n-1} \), where \( \alpha \) is an \( n^{th} \) root of unity. ### Step-by-step Solution: 1. **Define the Sum**: Let \( S = 1 + 2\alpha + 3\alpha^2 + \ldots + n\alpha^{n-1} \). 2. **Multiply by \( \alpha \)**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If alpha is an imaginary fifth root of unity, then log_(2)|1+alpha+alpha^(2)+alpha^(3)-1/alpha|=

If 1,alpha,alpha^(2),......alpha^(n-1) are n,n^(th) roots ofunity, then 1+2 alpha+3 alpha^(2)+4 alpha^(3)+......+n terms is equal to

If alpha(!=1) is a nth root of unity then S=1+3 alpha+5 alpha^(2)+......... upto n terms is equal to

If alpha!=1 is a fifth root of unity,then log_(sqrt(3))|1+alpha+alpha^(2)+alpha^(3)-(2)/(alpha)|=

If alpha is a non-real fifth root of unity, then the value of 3^(|1+alpha+alpha^(2),alpha^(-2)-alpha^(-1)| , is

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If alpha is the nth root of unity,then 1+2 alpha+3 alpha^(2)+rarr n terms equal to a.(-n)/((1-alpha)^(2)) b.(-n)/(1-alpha^(2)) c.(-2n)/(1-alpha) d.(-2n)/((1-alpha)^(2))

If 1,alpha_1, alpha_2, …alpha_(n-1) be nth roots of unity then (1+alpha_1)(1+alpha_2)……....(1+alpha_(n-1))= (A) 0 or 1 according as n is even or odd (B) 0 or 1 according as n is odd or even (C) n (D) -n

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If alpha is an n^(th) roots of unity, then 1+2alpha+3alpha^(2)+……..+n...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |