Home
Class 12
MATHS
The argument of (1-isqrt(3))/(1+isqrt(3)...

The argument of `(1-isqrt(3))/(1+isqrt(3))`, is

A

`pi/3`

B

`(2pi)/3`

C

`(7pi)/6`

D

`(4pi)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\), we will follow these steps: ### Step 1: Write the expression in a simplified form We start with the expression: \[ z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \] ### Step 2: Rationalize the denominator To simplify, we multiply the numerator and the denominator by the conjugate of the denominator: \[ z = \frac{(1 - i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} \] ### Step 3: Expand the numerator and denominator Using the formula \((a + b)(a - b) = a^2 - b^2\) for the denominator: \[ (1 + i\sqrt{3})(1 - i\sqrt{3}) = 1^2 - (i\sqrt{3})^2 = 1 - (-3) = 1 + 3 = 4 \] For the numerator, we use the formula \((a - b)^2 = a^2 - 2ab + b^2\): \[ (1 - i\sqrt{3})^2 = 1^2 - 2(1)(i\sqrt{3}) + (i\sqrt{3})^2 = 1 - 2i\sqrt{3} + (-3) = -2 - 2i\sqrt{3} \] ### Step 4: Combine the results Now we can write: \[ z = \frac{-2 - 2i\sqrt{3}}{4} = \frac{-1 - i\sqrt{3}}{2} \] ### Step 5: Identify the real and imaginary parts From the expression \(\frac{-1}{2} - i\frac{\sqrt{3}}{2}\), we identify: - Real part \(x = -\frac{1}{2}\) - Imaginary part \(y = -\frac{\sqrt{3}}{2}\) ### Step 6: Find the modulus \(r\) The modulus \(r\) is given by: \[ r = \sqrt{x^2 + y^2} = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] ### Step 7: Find the argument \(\theta\) The argument \(\theta\) can be found using: \[ \cos \theta = \frac{x}{r} = -\frac{1}{2}, \quad \sin \theta = \frac{y}{r} = -\frac{\sqrt{3}}{2} \] ### Step 8: Determine the quadrant Since both \(x\) and \(y\) are negative, the point lies in the third quadrant. ### Step 9: Find the angle In the third quadrant, the angle corresponding to \(\cos \theta = -\frac{1}{2}\) and \(\sin \theta = -\frac{\sqrt{3}}{2}\) is: \[ \theta = \pi + \frac{\pi}{3} = \frac{4\pi}{3} \] ### Final Answer Thus, the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\) is: \[ \frac{4\pi}{3} \] ---

To find the argument of the complex number \(\frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}\), we will follow these steps: ### Step 1: Write the expression in a simplified form We start with the expression: \[ z = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}} \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(6) is

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

4.The value of ((1+isqrt3)/(1-isqrt3))^6 + ((1-isqrt3)/(1+isqrt3))^6

(sqrt3+i)/(-1-isqrt3)=?

For any integer n,the argument of ((sqrt(3)+i)^(4n+1))/((1-i sqrt(3))^(4n))

Principal argument of z=-1-i sqrt(3)

Find the principal argument of (1+i sqrt(3))^(2)

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. The argument of (1-isqrt(3))/(1+isqrt(3)), is

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |