Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity, then `(1+omega-omega^(2))^(7)` equals

A

`128 omega`

B

`-128 omega`

C

`128 omega^(2)`

D

`-128 omega^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \((1 + \omega - \omega^2)^7\), where \(\omega\) is an imaginary cube root of unity. The cube roots of unity satisfy the equation \(x^3 = 1\), which gives us the roots \(1, \omega, \omega^2\) where \(\omega = e^{2\pi i / 3}\) and \(\omega^2 = e^{-2\pi i / 3}\). ### Step-by-step Solution: 1. **Understanding the Cube Roots of Unity**: The cube roots of unity satisfy the equation: \[ 1 + \omega + \omega^2 = 0 \] From this, we can express \(1 + \omega\) in terms of \(\omega^2\): \[ 1 + \omega = -\omega^2 \] 2. **Substituting into the Expression**: We need to evaluate: \[ 1 + \omega - \omega^2 \] Using the identity from step 1, we substitute: \[ 1 + \omega = -\omega^2 \] Thus: \[ 1 + \omega - \omega^2 = -\omega^2 - \omega^2 = -2\omega^2 \] 3. **Raising to the Power of 7**: Now we raise the expression to the power of 7: \[ (1 + \omega - \omega^2)^7 = (-2\omega^2)^7 \] This can be simplified as: \[ (-2)^7 \cdot (\omega^2)^7 \] 4. **Calculating the Powers**: We calculate \((-2)^7\) and \((\omega^2)^7\): \[ (-2)^7 = -128 \] Since \(\omega^3 = 1\), we can reduce the exponent of \(\omega^2\): \[ (\omega^2)^7 = \omega^{14} = \omega^{3 \cdot 4 + 2} = (\omega^3)^4 \cdot \omega^2 = 1^4 \cdot \omega^2 = \omega^2 \] 5. **Final Result**: Combining these results, we have: \[ (1 + \omega - \omega^2)^7 = -128 \cdot \omega^2 \] Thus, the final answer is: \[ \boxed{-128 \omega^2} \]

To solve the problem, we need to evaluate \((1 + \omega - \omega^2)^7\), where \(\omega\) is an imaginary cube root of unity. The cube roots of unity satisfy the equation \(x^3 = 1\), which gives us the roots \(1, \omega, \omega^2\) where \(\omega = e^{2\pi i / 3}\) and \(\omega^2 = e^{-2\pi i / 3}\). ### Step-by-step Solution: 1. **Understanding the Cube Roots of Unity**: The cube roots of unity satisfy the equation: \[ 1 + \omega + \omega^2 = 0 ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity,then (1+omega-omega^(2))^(7) is equal to 128 omega(b)-128 omega128 omega^(2)(d)-128 omega^(2)

If omega is the imaginary cube root of unity, then what is (2-omega+2omega^(2))^(27) equal to ?

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega be imaginary cube root of unity then (1-omega+omega^(2))^(5)+(1+omega-omega^(2))^(5) is equal to (a) 0 (b) 32 (c) 49 (d) none of these

If w be imaginary cube root of unity then (1+w-w^(2))^(7) equals:

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega,omega^(2) be imaginary cube root of unity then (3+3 omega+5 omega^(2))^(6)-(2+6 omega+2 omega^(2))^(3) is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If omega is an imaginary cube root of unity, then (1+omega-omega^(2))^...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |