Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then arg `(iomega) + "arg" (iomega^(2))=`

A

0

B

`pi//2`

C

`pi`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the arguments of the complex numbers \( i\omega \) and \( i\omega^2 \), where \( \omega \) is a complex cube root of unity. ### Step-by-Step Solution: 1. **Identify the Cube Roots of Unity**: The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} \quad \text{and} \quad \omega^2 = e^{4\pi i / 3} \] The third root is \( 1 \), but we will focus on \( \omega \) and \( \omega^2 \). 2. **Find the Argument of \( i\omega \)**: We know that \( i = e^{i\pi/2} \). Thus, we can express \( i\omega \) as: \[ i\omega = e^{i\pi/2} \cdot e^{2\pi i / 3} = e^{i(\pi/2 + 2\pi/3)} \] Now, we calculate the argument: \[ \text{arg}(i\omega) = \frac{\pi}{2} + \frac{2\pi}{3} \] To add these, we need a common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6}, \quad \frac{2\pi}{3} = \frac{4\pi}{6} \] Therefore: \[ \text{arg}(i\omega) = \frac{3\pi}{6} + \frac{4\pi}{6} = \frac{7\pi}{6} \] 3. **Find the Argument of \( i\omega^2 \)**: Similarly, for \( i\omega^2 \): \[ i\omega^2 = e^{i\pi/2} \cdot e^{4\pi i / 3} = e^{i(\pi/2 + 4\pi/3)} \] Again, we calculate the argument: \[ \text{arg}(i\omega^2) = \frac{\pi}{2} + \frac{4\pi}{3} \] Using the common denominator: \[ \frac{\pi}{2} = \frac{3\pi}{6}, \quad \frac{4\pi}{3} = \frac{8\pi}{6} \] Thus: \[ \text{arg}(i\omega^2) = \frac{3\pi}{6} + \frac{8\pi}{6} = \frac{11\pi}{6} \] 4. **Sum the Arguments**: Now we can find the sum of the two arguments: \[ \text{arg}(i\omega) + \text{arg}(i\omega^2) = \frac{7\pi}{6} + \frac{11\pi}{6} = \frac{18\pi}{6} = 3\pi \] 5. **Simplify the Result**: Since the argument is periodic with period \( 2\pi \): \[ 3\pi \equiv \pi \quad (\text{mod } 2\pi) \] ### Final Answer: Thus, the final answer is: \[ \text{arg}(i\omega) + \text{arg}(i\omega^2) = \pi \]

To solve the problem, we need to find the sum of the arguments of the complex numbers \( i\omega \) and \( i\omega^2 \), where \( \omega \) is a complex cube root of unity. ### Step-by-Step Solution: 1. **Identify the Cube Roots of Unity**: The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} \quad \text{and} \quad \omega^2 = e^{4\pi i / 3} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega is a complex cube root of unity,then (x-y)(x omega-y)(x omega^(2)-y)=

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If omega is a complex cube root of unity, then what is omega^(10)+omega^(-10) equal to ?

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega ne 1 is a complex cube root of unity, then 5.23 + omega + omega^(((1)/(2) + (3)/(8) + (9)/(32) + (27)/(128)+...)) is equal to __________

If omega is a complex cube root of unity,then the equation |z-omega|^(2)+|z-omega^(2)|^(2)=lambda will represent a circle,if

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. If omega is a complex cube root of unity, then arg (iomega) + "arg" (i...

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |