Home
Class 12
MATHS
The value of i^(i), is...

The value of `i^(i)`, is

A

`-pi/2`

B

`e^(-pi/2)`

C

`e^(pi/2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( i^i \), we can follow these steps: ### Step 1: Define the expression Let \( A = i^i \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \ln A = \ln(i^i) \] Using the property of logarithms, this simplifies to: \[ \ln A = i \ln i \] ### Step 3: Find \( \ln i \) To find \( \ln i \), we express \( i \) in exponential form. Recall that: \[ i = e^{i\frac{\pi}{2}} \] Thus, \[ \ln i = \ln\left(e^{i\frac{\pi}{2}}\right) = i\frac{\pi}{2} \] ### Step 4: Substitute \( \ln i \) back into the equation Now substituting \( \ln i \) back into our equation for \( \ln A \): \[ \ln A = i \cdot i\frac{\pi}{2} = -\frac{\pi}{2} \] ### Step 5: Exponentiate to solve for \( A \) To find \( A \), we exponentiate both sides: \[ A = e^{-\frac{\pi}{2}} \] ### Conclusion Thus, the value of \( i^i \) is: \[ i^i = e^{-\frac{\pi}{2}} \]

To find the value of \( i^i \), we can follow these steps: ### Step 1: Define the expression Let \( A = i^i \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

One of the values of i^(i) is

The value of i^(1+i) is

1) Find the value of i^(i)

The value of i^(i-oo)=x+iy then x^(2)+y^(2)=

The value of (i+1)(i-1) is

The value of i+i^(2)+i^(4)+i^(7) is

The value of (i^(3)+i^(4)) is

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Chapter Test
  1. The value of i^(i), is

    Text Solution

    |

  2. The locus of the center of a circle which touches the circles |z-z1|=a...

    Text Solution

    |

  3. If n1, n2 are positive integers, then (1 + i)^(n1) + ( 1 + i^3)^(n1) +...

    Text Solution

    |

  4. The modulus of sqrt(2i)-sqrt(-2i) is

    Text Solution

    |

  5. Prove that the triangle formed by the points 1,(1+i)/(sqrt(2)),a n di ...

    Text Solution

    |

  6. The value of (1+isqrt(3))/(1-isqrt(3))^(6)+(1-isqrt(3))/(1+isqrt(3))^(...

    Text Solution

    |

  7. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |

  8. If cosA+cosB+cosC=0,sinA + sinB + sinC=0and A+B+C=180^0, then the valu...

    Text Solution

    |

  9. The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omeg...

    Text Solution

    |

  10. The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+...

    Text Solution

    |

  11. The condition that x^(n+1)-x^(n)+1 shall be divisible by x^(2)-x+1 is ...

    Text Solution

    |

  12. The expression (1+i)^(n1)+(1+i^(3))^(n(2)) is real iff

    Text Solution

    |

  13. |{:("6i " "-3i " "1" ),("4 " " 3i" " -1"),("20 " "3 " " i"):}|=x+iy th...

    Text Solution

    |

  14. The centre of a square ABCD is at z0dot If A is z1 , then the centroid...

    Text Solution

    |

  15. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 and alpha...

    Text Solution

    |

  17. Sum of the series sum(r=0)^n (-1)^r ^nCr[i^(5r)+i^(6r)+i^(7r)+i^(8r)] ...

    Text Solution

    |

  18. If az(1)+bz(2)+cz(3)=0 for complex numbers z(1),z(2),z(3) and real num...

    Text Solution

    |

  19. If 2z1-3z2 + z3=0, then z1, z2 and z3 are represented by

    Text Solution

    |

  20. Re((z+4)/(2z-1)) = 1/2, then z is represented by a point lying on

    Text Solution

    |

  21. The vertices of a square are z1,z2,z3 and z4 taken in the anticlockwis...

    Text Solution

    |