Home
Class 12
MATHS
The value of alpha^(-n)+alpha^(-2n), n i...

The value of `alpha^(-n)+alpha^(-2n), n in N` and `alpha` is a non-real cube root of unity, is

A

3, if n is a multiple of 3

B

`-1`, if n is a mulitiple of 3

C

2, if n is a multiple of 3

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

Let `alpha=omega`. Then,
`alpha^(-n)+alpha^(-2n)=1/omega^(n)+1/omega^(2n) =(1/omega)^(n) +(1/omega^(2))^(n)`
`rArr alpha^(-n) + alpha^(-2n)= alpha^(2n)+alpha^(n)={{:(2,"if n is a multiple of 3"),(-1, "if n is not a multiple of 3"):}}`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If 1,alpha_1,alpha_2,alpha_3,.........,alpha_(3n) be the roots of the eqution x^(3n+1) - 1 =0, and w be an imaginary cube root of unity, then ((w^2-alpha_1)(w^2-alpha_2)....(w^(3n)-alpha_(3n))) /((w-alpha_1)(w2-alpha)....(w-alpha_(3n)))

cos (n + 1) alpha cos (n-1) alpha + sin (n + 1) alpha sin (n-1) alpha =

If 1,alpha,alpha^(2),alpha^(3),......,alpha^(n-1) are nn^(th) roots of unity,then find the value of (2011-alpha)(2011-alpha^(2))....(2011-alpha^(n-1))

If A_(alpha)=[cos alpha sin alpha-sin alpha cos alpha], then prove that (A_(alpha))^(n)=[cositive in n alpha-s in n alpha cos n alpha] for every positive integer n.

If n>=3 and 1,alpha_(1),alpha_(2),alpha_(3)...alpha_(n-1) are the n, nth roots of unity then find the value of sum_(1<=i

If alpha!=1 is an n^(th) root of unity and n in N such thatfirst three terms in the expansion of (alpha+x)^(n) are 1,alpha and (n-1)/(2n)bar(a)^(2), then the value of x, is

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If x^2+x+1=0 then the value of (x+1/x)^2+(x^2+1/(x^2))^2+...+(x^27+1/(...

    Text Solution

    |

  2. If x^2-x+1=0 then the value of sum[n=1]^[5][x^n+1/x^n]^2 is:

    Text Solution

    |

  3. The value of alpha^(-n)+alpha^(-2n), n in N and alpha is a non-real cu...

    Text Solution

    |

  4. If alpha is a non-real fourth root of unity, then the value of alpha^(...

    Text Solution

    |

  5. If 1,alpha,alpha^(2),……….,alpha^(n-1) are n^(th) root of unity, the va...

    Text Solution

    |

  6. If omega is an imaginary cube root of unity, then find the value of (1...

    Text Solution

    |

  7. If alpha is a non-real fifth root of unity, then the value of 3^(|1+a...

    Text Solution

    |

  8. If Zr=cos((2rpi)/5)+isin((2rpi)/5),r=0,1,2,3,4,... then z1z2z3z4z5 is...

    Text Solution

    |

  9. z is a complex number satisfying z^(4)+z^(3)+2z^(2)+z+1=0, then |z| is...

    Text Solution

    |

  10. if (5z2)/(7z1) is purely imaginary number then |(2z1+3z2)/(2z1-3z2) |...

    Text Solution

    |

  11. The locus of point z satisfying R e(1/z)=k ,w h e r ek is a nonzero re...

    Text Solution

    |

  12. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  13. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  14. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  15. if |z^2-1|=|z|^2+1 then z lies on

    Text Solution

    |

  16. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  17. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  18. If k>0, |z|=|w|=k, and alpha=(z-bar(w))/(k^2+zbar(w)), Re(alpha)

    Text Solution

    |

  19. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  20. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |