Home
Class 12
MATHS
The maximum value of |z| where z satisfi...

The maximum value of |z| where z satisfies the condition` |z+(2/z)|=2` is

A

`sqrt(3)-1`

B

`sqrt(3)`

C

`sqrt(3)+1`

D

`sqrt(2)+sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`|z|=|z+2/z-2/z|`
`rArr |z| le |z+2/z+-2/z|`
`|z| le |z+2/z|+|-2/z|` [Using triangle inequality]
`rArr |z| le 2 + 2/|z|` `[therefore |z+2/z|=2]` (given)
`rArr |z|^(2)-2|z|-2 le 0`
`rArr {|z|-1+sqrt(3)}{|z|-1-sqrt(3)} le 0`
`rArr 1-sqrt(3) le |z| le 1+sqrt(3)`
Thus, the maximum value of `|z|` is `1+sqrt(3)`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The maximum value of |z|, when z satisfy the condition |z+(3)/(z)|=3 is

The sum of the least and greates in absolute value of z which satisfies the condition |2z+1-I sqrt(3)|=1 , is

The complex number z satisfies thc condition |z-(25)/(z)|=24. The maximum distance from the origin of co-ordinates to the points z is

For the complex number z satisfying the condition |z+(2)/(z)|=2 , the maximum value of |z| is

Find the maximum and minimum values of |z| satisfying |z+(1)/(z)|=2

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The locus of point z satisfying R e(1/z)=k ,w h e r ek is a nonzero re...

    Text Solution

    |

  2. If z lies on the circle I z l = 1, then 2/z lies on

    Text Solution

    |

  3. The maximum value of |z| where z satisfies the condition |z+(2/z)|=2 i...

    Text Solution

    |

  4. If |z-4/z|=2 , then the maximum value of |Z| is equal to (1) sqrt(3...

    Text Solution

    |

  5. if |z^2-1|=|z|^2+1 then z lies on

    Text Solution

    |

  6. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  7. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  8. If k>0, |z|=|w|=k, and alpha=(z-bar(w))/(k^2+zbar(w)), Re(alpha)

    Text Solution

    |

  9. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  10. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  11. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  12. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  13. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  14. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  15. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |

  16. If z(1)=1+2i, z(2)=2+3i, z(3)=3+4i, then z(1),z(2) and z(3) represent ...

    Text Solution

    |

  17. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  18. The number of roots of the equation z^(15)=1 satisfying |"arg"(z)| le ...

    Text Solution

    |

  19. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  20. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |