Home
Class 12
MATHS
If |z|=k and omega=(z-k)/(z+k), then Re(...

If `|z|=k` and `omega=(z-k)/(z+k)`, then Re`(omega)`=

A

0

B

k

C

`1/k`

D

`-1/k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the real part of the complex number \(\omega\) defined as: \[ \omega = \frac{z - k}{z + k} \] given that \(|z| = k\). ### Step-by-Step Solution: 1. **Express \(z\) in terms of polar coordinates:** Since \(|z| = k\), we can express \(z\) as: \[ z = k e^{i\theta} = k(\cos \theta + i \sin \theta) \] 2. **Substitute \(z\) into the expression for \(\omega\):** Now substitute \(z\) into the formula for \(\omega\): \[ \omega = \frac{k(\cos \theta + i \sin \theta) - k}{k(\cos \theta + i \sin \theta) + k} \] 3. **Simplify the numerator and denominator:** The numerator becomes: \[ k(\cos \theta + i \sin \theta) - k = k(\cos \theta - 1 + i \sin \theta) \] The denominator becomes: \[ k(\cos \theta + i \sin \theta) + k = k(\cos \theta + 1 + i \sin \theta) \] Thus, we can write: \[ \omega = \frac{k(\cos \theta - 1 + i \sin \theta)}{k(\cos \theta + 1 + i \sin \theta)} \] 4. **Cancel \(k\) from numerator and denominator:** Since \(k \neq 0\), we can cancel \(k\): \[ \omega = \frac{\cos \theta - 1 + i \sin \theta}{\cos \theta + 1 + i \sin \theta} \] 5. **Multiply numerator and denominator by the conjugate of the denominator:** To simplify further, multiply the numerator and denominator by the conjugate of the denominator: \[ \text{Conjugate of the denominator} = \cos \theta + 1 - i \sin \theta \] Therefore: \[ \omega = \frac{(\cos \theta - 1 + i \sin \theta)(\cos \theta + 1 - i \sin \theta)}{(\cos \theta + 1 + i \sin \theta)(\cos \theta + 1 - i \sin \theta)} \] 6. **Calculate the denominator:** The denominator simplifies to: \[ (\cos \theta + 1)^2 + \sin^2 \theta = \cos^2 \theta + 2\cos \theta + 1 + \sin^2 \theta = 2 + 2\cos \theta = 2(1 + \cos \theta) \] 7. **Calculate the numerator:** The numerator simplifies as follows: \[ (\cos^2 \theta - 1 + i(\sin \theta(\cos \theta + 1) - \sin \theta(\cos \theta - 1))) \] This simplifies to: \[ (\cos^2 \theta - 1) + i(2\sin \theta) \] 8. **Combine the results:** Thus, we have: \[ \omega = \frac{(\cos^2 \theta - 1) + i(2\sin \theta)}{2(1 + \cos \theta)} \] 9. **Extract the real part:** The real part of \(\omega\) is: \[ \text{Re}(\omega) = \frac{\cos^2 \theta - 1}{2(1 + \cos \theta)} \] Noting that \(\cos^2 \theta - 1 = -\sin^2 \theta\): \[ \text{Re}(\omega) = \frac{-\sin^2 \theta}{2(1 + \cos \theta)} \] 10. **Final Result:** Since the numerator is negative and the denominator is positive, we can conclude: \[ \text{Re}(\omega) = 0 \]

To solve the problem, we need to find the real part of the complex number \(\omega\) defined as: \[ \omega = \frac{z - k}{z + k} \] given that \(|z| = k\). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then Re(w) is 0(b)(1)/(|z+1|^(2))|(1)/(z+1)|,(1)/(|z+1|^(2))(d)(sqrt(2))/(|z|1|^(2))

If z ne 0 lies on the circle |z-1| = 1 and omega = 5//z , then omega lies on

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z|=1 and let omega=((1-z)^(2))/(1-z^(2)), then prove that the locus of omega is equivalent to |z-2|=|z+2|

If |z|<=1 and | omega|<=1, show that |z-omega|^(2)<=(|z|-| omega|)^(2)+(argz-arg omega)^(2)

If |z-1|=|z-5| and Re(z)=k ; then evaluate k

Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) = theta . Let omega = (z(1-bar(z)))/(bar(z)(1+z)) , then Re (omega) is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. if |z^2-1|=|z|^2+1 then z lies on

    Text Solution

    |

  2. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  3. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  4. If k>0, |z|=|w|=k, and alpha=(z-bar(w))/(k^2+zbar(w)), Re(alpha)

    Text Solution

    |

  5. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  6. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  7. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  8. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  9. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  10. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  11. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |

  12. If z(1)=1+2i, z(2)=2+3i, z(3)=3+4i, then z(1),z(2) and z(3) represent ...

    Text Solution

    |

  13. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  14. The number of roots of the equation z^(15)=1 satisfying |"arg"(z)| le ...

    Text Solution

    |

  15. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  16. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  17. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  18. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  19. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5, fin...

    Text Solution

    |

  20. Let z1, z2 be two complex numbers represented by points on the circle ...

    Text Solution

    |