Home
Class 12
MATHS
If k>0, |z|=|w|=k, and alpha=(z-bar(w))/...

If `k>0`, `|z|=|w|=k`, and `alpha=(z-bar(w))/(k^2+zbar(w))`, `Re(alpha)`

A

0

B

`k//2`

C

k

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`|z|=|omega|=k`
`rArr |z|^(2)=|omega|^(2)=k^(2) rArr zbarz=k^(2) rArr omegabar(omega)=k^(2)`
Now, `alpha=(z-baromega)/(k^(2)+zbaromega)`
`rArr baralpha = (barz-omega)/(k^(2)+barzomega) = (k^(2)/z-k^(2)/baromega)/(k^(2)+k^(2)/z xx k^(2)/baromega) =- alpha`
`rArr alpha+baralpha=0 rArr "Re"(alpha)=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If k>0,|z|=backslash w backslash=k, and alpha=(z-bar(w))/(k^(2)+zbar(w)) then Re(alpha)(A)0(B)(k)/(2)(C)k(D) None of these

Let z and w are two non zero complex number such that |z|=|w|, and Arg(z)+Arg(w)=pi then (a) z=w( b) z=bar(w)(c)bar(z)=bar(w)(d)bar(z)=-bar(w)

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) = theta . Let omega = (z(1-bar(z)))/(bar(z)(1+z)) , then Re (omega) is equal to

Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = theta . Let w = (z(1-bar(z)))/(bar(z)(1+z)) , then Re(w) is equal to

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If z and w are two complex number such that |zw|=1 and arg(z)arg(w)=(pi)/(2), then show that bar(z)w=-i

If z_(1)=a+ib and z_(2)=c+id are complex numbers such that Re(z_(1)bar(z)_(2))=0, then the |z_(1)|=|z_(2)|=1 and Re(z_(1)bar(z)_(2))=0, then the pair ofcomplex nunmbers omega=a+ic and omega_(2)=b+id satisfies

Let zandw be two nonzero complex numbers such that |z|=|w| andarg (z)+arg(w)=pi Then prove that z=-bar(w) .

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If the number (z-1)/(z+1) is purely imaginary, then

    Text Solution

    |

  2. If |z|=k and omega=(z-k)/(z+k), then Re(omega)=

    Text Solution

    |

  3. If k>0, |z|=|w|=k, and alpha=(z-bar(w))/(k^2+zbar(w)), Re(alpha)

    Text Solution

    |

  4. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  5. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  6. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  7. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  8. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  9. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  10. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |

  11. If z(1)=1+2i, z(2)=2+3i, z(3)=3+4i, then z(1),z(2) and z(3) represent ...

    Text Solution

    |

  12. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  13. The number of roots of the equation z^(15)=1 satisfying |"arg"(z)| le ...

    Text Solution

    |

  14. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  15. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  16. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  17. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  18. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5, fin...

    Text Solution

    |

  19. Let z1, z2 be two complex numbers represented by points on the circle ...

    Text Solution

    |

  20. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |