Home
Class 12
MATHS
Prove that |Z-Z1|^2+|Z-Z2|^2=a will repr...

Prove that `|Z-Z_1|^2+|Z-Z_2|^2=a` will represent a real circle [with center `(|Z_1+Z_2|^//2+)` ] on the Argand plane if `2ageq|Z_1-Z_1|^2`

A

`k lt |z_(1)-z_(2)|^(2)`

B

`k = |z_(1)-z_(2)|^(2)`

C

`k ge 1/2|z_(1)-z_(2)|^(2)`

D

`k lt 1/2|z_(1)-z_(2)|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`|z-z_(1)|^(2)+|z-z_(2)|^(2)=k`
`rArr |z|^(2)+|z_(1)|^(2)-2"Re"(zbarz_(1))+|z|^(2)+|z_(2)|^(2)-2"Re"(zbarz_(2))=k`
`rArr |z|^(2)-2"Re"(z(barz_(1)+barz_(2))/2) =1/2{k-|z_(1)|^(2)-|z_(2)|^(2)}`
`rArr |z|^(2)-2"Re"(z(barz_(1)+barz_(2))/2)+|(z_(1)+z_(2))/(2)|^(2)=1/2{k-|z_(1)|^(2)-|z_(2)|^(2)}+|(z_(1)+z_(2))/(2)|^(2)`
`rArr |z-(z_(1)+z_(2))/(2)|^(2)=1/4{2k-2|z_(1)|^(2)-2|z_(2)|^(2)+|z_(1)|^(2)+|z_(2)|^(2)+2"Re"(z_(1)barz_(2))}`
`rArr |z-(z_(1)+z_(2))/(2)|^(2)=1/2sqrt(2k-|z_(1)-z_(2)|^(2))`
Clearly, it represent a circle having center at `(z_(1)+z_(2))/(2)` and radius `1/2sqrt(2k-|z_(1)-z_(2)|^(2))`. For the circle to exist, we must have
`2k-|z_(1)-z_(2)|^(2) ge 0 rArr k ge 1/2|z_(1)-z_(2)|^(2)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Prove that |Z-Z_(1)|^(2)+|Z-Z_(2)|^(2)=a will represent a real circle Iwith center (|Z_(1)+Z_(2)|/2+) on the Argand plane if 2a>=|Z_(1)-Z_(1)|^(2)

Prove that |z-z_1|^2+|z-z_2|^2 = k will represent a circle if |z_1-z_2|^2 le 2k.

Show that complex numbers z_1=-1+5i and z_2=-3+2i on the argand plane.

The centre of circle represented by |z+1|=2|z-1| in the complex plane is

If the equation |z-z_1|^2 + |z-z_2|^2 =k , represents the equation of a circle, where z_1 = 3i, z_2 = 4+3i are the extremities of a diameter, then the value of k is

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

Let z be not a real number such that (1+z+z^(2))/(1-z+z^(2))in R, then prove tha |z|=1

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If k>0, |z|=|w|=k, and alpha=(z-bar(w))/(k^2+zbar(w)), Re(alpha)

    Text Solution

    |

  2. The region in the Argand diagram defined by |z-2i|+|z+2i| lt 5 is the ...

    Text Solution

    |

  3. Prove that |Z-Z1|^2+|Z-Z2|^2=a will represent a real circle [with cent...

    Text Solution

    |

  4. The equation |z-1|^(2)+|z+1|^(2)=2, represent

    Text Solution

    |

  5. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  6. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  7. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  8. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |

  9. If z(1)=1+2i, z(2)=2+3i, z(3)=3+4i, then z(1),z(2) and z(3) represent ...

    Text Solution

    |

  10. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  11. The number of roots of the equation z^(15)=1 satisfying |"arg"(z)| le ...

    Text Solution

    |

  12. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  13. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  14. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  15. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  16. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5, fin...

    Text Solution

    |

  17. Let z1, z2 be two complex numbers represented by points on the circle ...

    Text Solution

    |

  18. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |

  19. If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+z2+z3|

    Text Solution

    |

  20. Complex numbers z(1) and z(2) lie on the rays arg(z1)=theta and arg(z1...

    Text Solution

    |