Home
Class 12
MATHS
If |z+barz|+|z-barz|=2, then z lies on...

If `|z+barz|+|z-barz|=2`, then z lies on

A

a straight line

B

a square

C

a circle

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation involving the complex number \( z \) and its conjugate \( \bar{z} \). ### Step-by-Step Solution: 1. **Define the Complex Number**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers, and \( i \) is the imaginary unit. 2. **Find the Conjugate**: The conjugate of \( z \) is given by \( \bar{z} = x - iy \). 3. **Substitute into the Given Equation**: The equation provided is: \[ |z + \bar{z}| + |z - \bar{z}| = 2 \] Substitute \( z \) and \( \bar{z} \): \[ |(x + iy) + (x - iy)| + |(x + iy) - (x - iy)| = 2 \] 4. **Simplify the Expressions**: - For \( z + \bar{z} \): \[ z + \bar{z} = (x + iy) + (x - iy) = 2x \] - For \( z - \bar{z} \): \[ z - \bar{z} = (x + iy) - (x - iy) = 2iy \] 5. **Calculate the Moduli**: - The modulus of \( z + \bar{z} \): \[ |z + \bar{z}| = |2x| = 2|x| \] - The modulus of \( z - \bar{z} \): \[ |z - \bar{z}| = |2iy| = 2|y| \] 6. **Combine the Results**: Substitute back into the equation: \[ 2|x| + 2|y| = 2 \] 7. **Simplify the Equation**: Divide the entire equation by 2: \[ |x| + |y| = 1 \] 8. **Interpret the Result**: The equation \( |x| + |y| = 1 \) represents a geometric figure in the coordinate plane. Specifically, this is the equation of a square (or diamond shape) centered at the origin with vertices at \( (1, 0) \), \( (0, 1) \), \( (-1, 0) \), and \( (0, -1) \). ### Conclusion: Thus, the complex number \( z \) lies on the boundary of a square (or diamond shape) in the complex plane.

To solve the problem, we need to analyze the given equation involving the complex number \( z \) and its conjugate \( \bar{z} \). ### Step-by-Step Solution: 1. **Define the Complex Number**: Let \( z = x + iy \), where \( x \) and \( y \) are real numbers, and \( i \) is the imaginary unit. 2. **Find the Conjugate**: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If |z+barz|+|z-barz|=8 , then z lies on

If |z+barz|=|z-barz| , then value of locus of z is

If z is a complex number such that |z - barz| +|z + barz| = 4 then find the area bounded by the locus of z.

If (1+i)z=(1-i)barz , then z is equal to

Prove that |(z-1)/(1-barz)|=1 where z is as complex number.

Solve: z +2barz=ibarz

If |z|= maximum {|z+2|,|z-2|} , then (A) |z- barz | = 1/2 (B) |z+ barz |=4 (C) |z+ barz |= 1/2 (D) | z-barz =2

If z_1, z_2, z_3 are three collinear points in |argand plane, then |(z_1,bar z_1,1),(z_2,barz_2,1),(z_3,barz_3,1)|=

If z= x+iy, "then show that " z barz + 2(z + barz) +b = 0, where b ∈R,"respresents a circle" .

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The points representing the complex numbers z for which |z+4|^(2)-|z-4...

    Text Solution

    |

  2. If |z+barz|=|z-barz|, then value of locus of z is

    Text Solution

    |

  3. If |z+barz|+|z-barz|=2, then z lies on

    Text Solution

    |

  4. The closest distance of the origin from a curve given as Abarz+barAz+A...

    Text Solution

    |

  5. If z(1)=1+2i, z(2)=2+3i, z(3)=3+4i, then z(1),z(2) and z(3) represent ...

    Text Solution

    |

  6. If z(1) and z(2) are two of the 8^(th) roots of unity such that arg(z(...

    Text Solution

    |

  7. The number of roots of the equation z^(15)=1 satisfying |"arg"(z)| le ...

    Text Solution

    |

  8. If z(1),z(2),……………,z(n) lie on the circle |z|=R, then |z(1)+z(2)+………...

    Text Solution

    |

  9. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  10. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  11. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  12. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5, fin...

    Text Solution

    |

  13. Let z1, z2 be two complex numbers represented by points on the circle ...

    Text Solution

    |

  14. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |

  15. If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+z2+z3|

    Text Solution

    |

  16. Complex numbers z(1) and z(2) lie on the rays arg(z1)=theta and arg(z1...

    Text Solution

    |

  17. If z is a complex number satisfying |z|^(2)-|z|-2 lt 0, then the value...

    Text Solution

    |

  18. |z - i | <= 2 and z0 = 5 + 3i then max. value of |iz+z0| is :

    Text Solution

    |

  19. If |z|= "max"{|z-2|,|z+2|}, then

    Text Solution

    |

  20. if |(z-6)/(z+8)|=1, then the value of x in R, where z=x+i|{:(-3,2i,2+i...

    Text Solution

    |