Home
Class 12
MATHS
Let omega = - (1)/(2) + i (sqrt3)/(2), t...

Let `omega = - (1)/(2) + i (sqrt3)/(2)`, then the value of the determinant `|(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`, is

A

`3omega`

B

`3omega(omega-1)`

C

`3omega^(2)`

D

`3omega(1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B

We have,
`Delta=|{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`
`rArr Delta=|{:(1,0,0),(1,-2-omega^(2),omega^(2)-1),(1,omega^(2)-1,omega-1):}|` Applying `C_(2) rArr C_(2)-C_(1)`,
`rArr Delta=-(2omega+omega^(3)-2-omega^(2))-(omega^(4)-2omega^(2)+1)`
`rArr Delta=-(2omega-1-omega^(2))-(omega-2omega^(2)+1)`
`rArr Delta=-(2omega+omega)-(-3omega^(2))=-3omega+3omega^(2)=3omega(omega-1)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

(1-omega+omega^(2))(1+omega-omega^(2))=4

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  2. The complex number z1,z2 and z3 satisfying (z1 - z3)/(z2 - z3) = ( 1 -...

    Text Solution

    |

  3. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  4. For all complex numbers z1,z2 satisfying |z1|=12 and |z2-3-4i|=5, fin...

    Text Solution

    |

  5. Let z1, z2 be two complex numbers represented by points on the circle ...

    Text Solution

    |

  6. If z lies on unit circle with center at the origin, then (1+z)/(1+barz...

    Text Solution

    |

  7. If |z1-1|<1, |z2-2|<2,|z3-3|<3 then |z1+z2+z3|

    Text Solution

    |

  8. Complex numbers z(1) and z(2) lie on the rays arg(z1)=theta and arg(z1...

    Text Solution

    |

  9. If z is a complex number satisfying |z|^(2)-|z|-2 lt 0, then the value...

    Text Solution

    |

  10. |z - i | <= 2 and z0 = 5 + 3i then max. value of |iz+z0| is :

    Text Solution

    |

  11. If |z|= "max"{|z-2|,|z+2|}, then

    Text Solution

    |

  12. if |(z-6)/(z+8)|=1, then the value of x in R, where z=x+i|{:(-3,2i,2+i...

    Text Solution

    |

  13. If |z-1|+|z+3|<=8, then the range of values of |z-4| is

    Text Solution

    |

  14. The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

    Text Solution

    |

  15. Find the range of K for which the equation |z+i| - |z-i | = K represen...

    Text Solution

    |

  16. If |z+3i|+|z-i|=8, then the locus of z, in the Argand plane, is

    Text Solution

    |

  17. In Fig. 42, a point 'z' is equidistant from three distinct points z(1)...

    Text Solution

    |

  18. Let P(e^(itheta1)), Q(e^(itheta2)) and R(e^(itheta3)) be the vertices...

    Text Solution

    |

  19. If A(z(1)),B(z(2)), C(z(3)) are the vertices of an equilateral triangl...

    Text Solution

    |

  20. If A (z1), B (z2) and C (z3) are three points in the argand plane whe...

    Text Solution

    |