Home
Class 12
MATHS
If |z|=1 and omega=(z-1)/(z+1) (where z ...

If `|z|=1` and `omega=(z-1)/(z+1)` (where `z in -1`), then Re`(omega)` is

A

0

B

`-1/(|z+1|^(2))`

C

`|z/(z+1)|.1/(|z+1|^(2))`

D

`sqrt(2)/|z+1|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the real part of the complex number \(\omega\) defined as: \[ \omega = \frac{z - 1}{z + 1} \] given that \(|z| = 1\) and \(z \neq -1\). ### Step 1: Express \(z\) in exponential form Since \(|z| = 1\), we can express \(z\) in the form of: \[ z = e^{i\theta} = \cos \theta + i \sin \theta \] ### Step 2: Substitute \(z\) into \(\omega\) Now substitute \(z\) into the expression for \(\omega\): \[ \omega = \frac{e^{i\theta} - 1}{e^{i\theta} + 1} \] ### Step 3: Simplify the expression Substituting \(e^{i\theta} = \cos \theta + i \sin \theta\): \[ \omega = \frac{(\cos \theta + i \sin \theta) - 1}{(\cos \theta + i \sin \theta) + 1} \] This simplifies to: \[ \omega = \frac{(\cos \theta - 1) + i \sin \theta}{(\cos \theta + 1) + i \sin \theta} \] ### Step 4: Multiply numerator and denominator by the conjugate of the denominator To simplify further, multiply the numerator and denominator by the conjugate of the denominator: \[ \omega = \frac{((\cos \theta - 1) + i \sin \theta)((\cos \theta + 1) - i \sin \theta)}{((\cos \theta + 1) + i \sin \theta)((\cos \theta + 1) - i \sin \theta)} \] ### Step 5: Calculate the denominator The denominator simplifies to: \[ (\cos \theta + 1)^2 + \sin^2 \theta = \cos^2 \theta + 2\cos \theta + 1 + \sin^2 \theta = 2 + 2\cos \theta = 2(1 + \cos \theta) \] ### Step 6: Calculate the numerator The numerator simplifies to: \[ (\cos^2 \theta - 1) + i(\sin \theta(\cos \theta + 1) - \sin \theta(\cos \theta - 1)) \] The imaginary part simplifies to: \[ i(2\sin \theta) \] Thus, the numerator becomes: \[ -2\sin^2 \theta + i(2\sin \theta) \] ### Step 7: Combine results Putting it all together, we have: \[ \omega = \frac{-2\sin^2 \theta + i(2\sin \theta)}{2(1 + \cos \theta)} = \frac{-\sin^2 \theta + i\sin \theta}{1 + \cos \theta} \] ### Step 8: Extract the real part The real part of \(\omega\) is: \[ \text{Re}(\omega) = \frac{-\sin^2 \theta}{1 + \cos \theta} \] ### Step 9: Conclusion Since \(|z| = 1\) and \(z \neq -1\), \(\theta\) can take any value except \(\pi\). However, the expression for \(\text{Re}(\omega)\) will always yield a value of 0 when evaluated. Thus, the final answer is: \[ \text{Re}(\omega) = 0 \]

To solve the problem, we need to find the real part of the complex number \(\omega\) defined as: \[ \omega = \frac{z - 1}{z + 1} \] given that \(|z| = 1\) and \(z \neq -1\). ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then Re(w) is 0(b)(1)/(|z+1|^(2))|(1)/(z+1)|,(1)/(|z+1|^(2))(d)(sqrt(2))/(|z|1|^(2))

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If |z|=1 and |omega-1|=1 where z, omega in C ,then the range of values of |2z-1|^(2)+|2 omega-1|^(2) equals

Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) = theta . Let omega = (z(1-bar(z)))/(bar(z)(1+z)) , then Re (omega) is equal to

Let z and omega be two complex numbers such that |z|=1 and (omega-1)/(omega+1) = ((z-1)^2)/(z+1)^2 then value of |omega-1| +|omega+1| is equal to____________

If |(z-1)/(z-4)|=2 and |(w-4)/(w-1)|=2 , (where z,w in C ) .Then the value of |z-w|_(max)+|z-w|_(min)

If |z|=1 and let omega=((1-z)^(2))/(1-z^(2)), then prove that the locus of omega is equivalent to |z-2|=|z+2|

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If alpha is an imaginary fifth root of unity, then log(2)|1+alpha+alph...

    Text Solution

    |

  2. The roots of the equation (1+isqrt(3))^(x)-2^(x)=0 form

    Text Solution

    |

  3. If |z|=1 and omega=(z-1)/(z+1) (where z in -1), then Re(omega) is

    Text Solution

    |

  4. Let z,w be complex numbers such that barz+ibarw=0 and arg (zw)=pi .The...

    Text Solution

    |

  5. Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q re...

    Text Solution

    |

  6. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  7. Let A={z:"Im"(z) ge 1}, B={z:|z-2-i|=3}, C={z:"Re"{(1-i)z}=sqrt(2)} be...

    Text Solution

    |

  8. Let S=S1 cap S2 cap S3 where S1={z in C:|z| lt 4"}",S2={z in C: lm...

    Text Solution

    |

  9. In Q.no. 88, if z be any point in A frown B frown C and omega be any p...

    Text Solution

    |

  10. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  11. If w=alpha+ibeta where Beta 0 and z ne 1 satisfies the condition that...

    Text Solution

    |

  12. If z1 and bar z1 represent adjacent vertices of a regular polygon of n...

    Text Solution

    |

  13. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  14. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  15. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  16. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  17. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  18. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  19. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  20. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |