Home
Class 12
MATHS
Let z,w be complex numbers such that bar...

Let `z,w` be complex numbers such that `barz+ibarw=0` and `arg (zw)=pi` .Then `arg(z)` equals

A

`(5pi)/4`

B

`pi/2`

C

`(3pi)/4`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
C

We have,
`barz+iomega=0` and arg `(zomega)=pi`
`rArr bar(z-iomega)=0` and arg `(z)+"arg"(omega)=pi`
`rArr z=iomega` and `"arg"(z)+"arg"(omega)=pi`
`"arg"(z)=pi/2+"arg"(omega)` and `"arg"(z) + "arg"(omega)=pi`
`rArr -pi/2+2"arg"(z)=pi rArr "arg"(z)=(3pi)/4`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let z,w be complex numbers such that barz+ibarw=0 and arg zw=pi Then argz equals

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then

Let z,omega be complex number such that z+ibar(omega)=0 and z omega=pi. Then find arg z

If z and w are complex numbers satisfying barz+ibarw=0 and amp(zw)=pi , then amp(w) is equal to (where, amp(w) in (-pi,pi] )

Let z and w be two non-zero complex number such that |z|=|w| and arg (z)+arg(w)=pi then z equals.w(b)-w (c) w(d)-w

Let z_(1) and z_(2) be two complex numbers such that bar(z)_(1)+bar(iz)_(2)=0 and arg(z_(1)z_(2))=pi then find arg(z_(1))

If z is a complex number such that |z|=4 and arg(z)=(5 pi)/(6) then z is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The roots of the equation (1+isqrt(3))^(x)-2^(x)=0 form

    Text Solution

    |

  2. If |z|=1 and omega=(z-1)/(z+1) (where z in -1), then Re(omega) is

    Text Solution

    |

  3. Let z,w be complex numbers such that barz+ibarw=0 and arg (zw)=pi .The...

    Text Solution

    |

  4. Let OP.OQ=1 and let O,P and Q be three collinear points. If O and Q re...

    Text Solution

    |

  5. If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on a line no...

    Text Solution

    |

  6. Let A={z:"Im"(z) ge 1}, B={z:|z-2-i|=3}, C={z:"Re"{(1-i)z}=sqrt(2)} be...

    Text Solution

    |

  7. Let S=S1 cap S2 cap S3 where S1={z in C:|z| lt 4"}",S2={z in C: lm...

    Text Solution

    |

  8. In Q.no. 88, if z be any point in A frown B frown C and omega be any p...

    Text Solution

    |

  9. A particle P starts from the point z(0)=1+2i, where i=sqrt(-1). It mov...

    Text Solution

    |

  10. If w=alpha+ibeta where Beta 0 and z ne 1 satisfies the condition that...

    Text Solution

    |

  11. If z1 and bar z1 represent adjacent vertices of a regular polygon of n...

    Text Solution

    |

  12. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  13. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  14. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  15. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  16. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  17. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  18. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  19. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  20. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |