Home
Class 12
MATHS
I f|z|=max{|z-1|,|z+1|}, then...

`I f|z|=max{|z-1|,|z+1|}`, then

A

`|z+barz|=1/2`

B

`z+barz=1`

C

`|z+barz|=1`

D

z-barz=5`

Text Solution

Verified by Experts

The correct Answer is:
C

If `|z|=|z-1|`, then
`|z|^(2)=|z-1|^(2)`
`zbarz=zbarz-z-barz+1 rArr z+barz=1 rArr |z+barz|=1`
At `z=|z+1|`, then
`|z|^(2)=|z+1|^(2)`
`rArr zbarz=zbarz+barz+z+1 rArr z+barz=-1 rArr |z+barz|=1`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If|z|=max{|z-1|,|z+1|}, then

If |z|=max{|z-21,|z+2|]}, then locus of z is

If |z|= "max"{|z-2|,|z+2|} , then

If |z - 1| = |z + 1| = |z - 2i|, then value of |z| is

If z satisfies |z-1|<|z+3| then omega=2z+3-i, (where i=sqrt(-1) ) sqtisfies

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to

If z_(1) satisfies |z-1|=1 and z_(2) satisfies |z-4i|=1 , then |z_(1)-z_(2)|_("max")-|z_(1)-z_(2)|_("min") is equal to ___________

The number of complex numbers z such that |z - i| = |z + i| = |z + 1| is

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If w=alpha+ibeta where Beta 0 and z ne 1 satisfies the condition that...

    Text Solution

    |

  2. If z1 and bar z1 represent adjacent vertices of a regular polygon of n...

    Text Solution

    |

  3. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  4. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  5. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  6. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  7. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  8. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  9. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  10. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  11. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |

  12. Let omega be the complex number cos((2pi)/3)+isin((2pi)/3). Then the...

    Text Solution

    |

  13. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  14. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  15. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  16. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  17. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  18. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  19. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  20. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |