Home
Class 12
MATHS
The minimum value of |a+bomega+comega^(2...

The minimum value of `|a+bomega+comega^(2)|`, where a,b,c are all not equal integers and `omega (ne 1)` is a cube root of unity, is

A

`sqrt(3)`

B

`1//2`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
C

Let `x=|a+bomega+comega^(2)|`. Then,
`x^(2)=|a+bomega+comega^(2)|^(2)=(a+bomega+comega^(2))(bar(a+bomega+comega^(2)))`
`rArr x^(2)=(a+bomega+cbaromega^(2))(a+bomega+comega^(2))`
`rArr x^(2)=(a+bomega^(2)+comega)(a+bomega+comega^(2))`
`rArr x^(2)=1/2{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}`
It is given that a,b,c are integers not all equal. This means that at least two are unequal i.e., either `a ne b` or `bne c` or `c ne a`.
If `a ne b` and `b=c` or `a=c`, then `|a-b| ge 1` and `|a-c| ge 1`
`therefore x^(2) ge 1`.
Similarly, in all other cases, we have `x^(2) ge 1`.
Hence, the minimum value of x is 1.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity but not equal to 1, then minimum value of abs(a+bomega+comega^(2)) , (where a,b and c are integers but not all equal ), is

What omegane1 be a cube root of unity. Then minimum value of set {|a+bomega+comega^(2)|^(2) , a,b,c are distinct non zero intergers) equals

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If w is a non real cube root of unity, then minimum value of | a+ bw + c w^2|is ( If a,b,c are not equal): (A) 0 (B) (sqrt3)/2 (C) 1 (D) 2

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If z1 and bar z1 represent adjacent vertices of a regular polygon of n...

    Text Solution

    |

  2. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  3. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  4. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  5. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  6. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  7. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  8. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  9. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  10. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |

  11. Let omega be the complex number cos((2pi)/3)+isin((2pi)/3). Then the...

    Text Solution

    |

  12. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  13. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  14. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  15. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  16. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  17. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  18. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  19. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  20. If z is any complex number satisfying |z-3-2i|lt=2 then the maximum va...

    Text Solution

    |