Home
Class 12
MATHS
The shaded region, where P=(-1,0),Q=(-1+...

The shaded region, where `P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),-sqrt(2),S=(1,0)` is represented by Figure `|z+1|>2,|a r g(z+1)2,|a r g(z+1)>>pi/4` `|z+1|<<2,|a r g(z+1)>pi/2`

A

`|z+1| gt 2, |"arg"(z+1)| lt pi/4`

B

`|z+1| lt 2,|"arg"(z+1)| lt pi/4`

C

`|z-1| gt 2, |"arg"(z+1)| gt pi/4`

D

`|z-1|lt 2, |"arg"(z+1)| gt pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`PQ=PR=PS`
`therefore` QR is an arc of the circle centred at `P(-1,0)` and radius 2 units.
Also, `angleQPS=angleRPS=pi/4`
Therefore, any point z in the shaded region lies outside the circle `|z+1|=2` and the line joining z and `P(-1,0)` makes angle less than `45^(@)` with X-axis on its either side.
Hence, `|z+1| gt 2` and `|"arg"(z+1)| lt pi/4`.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The shaded region ,where P=(-1 ,0)Q=(-1 + sqrt(2),sqrt(2)) R=(-1+sqrt(2),-sqrt(2)),S=1(1,0) is represent by

The equation z((2+1+i sqrt(3))/(z+1+i sqrt(3)))+bar(z)(z+1+i sqrt(3))=0 represents a circle with

Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z))] = pi/4 +1/2 cos^(-1) z

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

If z=((1+i sqrt(3))^(2))/(4i(1-i sqrt(3))) is a complex number then a.arg(z)=(pi)/(4) b.arg(z)=(pi)/(2)c|z|=(1)/(2)d.|z|=2

If |z_(1)|=2,(1-i)z_(2)+(1+i)bar(z)_(2)=8sqrt(2) , ( z_(1),z_(2) are complex variables) then the minimum value of |z_(1)-z_(2)| ,is

What is locus of z if z-1-sin^(-1)((1)/(sqrt(3)))|+|z+cos^(-1)((1)/(sqrt(3)))-(pi)/(2)|=1?

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. I f|z|=max{|z-1|,|z+1|}, then

    Text Solution

    |

  2. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  3. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  4. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  5. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  6. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  7. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  8. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  9. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |

  10. Let omega be the complex number cos((2pi)/3)+isin((2pi)/3). Then the...

    Text Solution

    |

  11. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  12. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  13. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  14. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  15. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  16. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  17. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  18. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  19. If z is any complex number satisfying |z-3-2i|lt=2 then the maximum va...

    Text Solution

    |

  20. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |