Home
Class 12
MATHS
If a,b,c are distinct integers and omega...

If a,b,c are distinct integers and `omega(ne 1)` is a cube root of unity, then the minimum value of `|a+bomega+comega^(2)|+|a+bomega^(2)+comega|` is

A

`2sqrt(3)`

B

3

C

`4sqrt(2)`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

Let `z=a+bomega+comega^(2)`. Then,
`|z|^(2)=zbarz=(a+bomega+comega^(2))(a+bomega^(2)+comega) [therefore baromega=omega^(2)]`
`rArr |z|^(2)=1/2[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]`
`rArr |z|^(2)=1/2[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)]`
`rArr |z|^(2) ge 1/2 xx 6 =3` `[therefore a ne b ne c therefore |a-b| gt 1, |b-c| ge 1` and `|a-c| ge 2]`
`rArr |z| ge sqrt(3)`
`therefore |a+bomega+comega^(2)|+|a+bomega^(2)+comega|`
`=|a+bomega+comegak^(2)|+|bar(a+bomega+comega^(2))|`
`=2|a+bomega+comega^(2)|=2|z| ge 2sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct odd integers and omega is non real cube root of unity,then minimum value of |a omega^(2)+b+c omega|, is

If a,b,c are distinct integers and a cube root of unity then minimum value of x=|a+b omega+c omega^(2)|+|a+b omega^(2)+c omega|

If omega (ne 1) is a cube root of unity, then the value of tan[(omega^(2017) + omega^(2225)) pi - pi//3]

Statement-1: If a,b,c are distinct real number and omega( ne 1) is a cube root of unity, then |(a+bomega+comega^(2))/(aomega^(2)+b+comega)|=1 Statement-2: For any non-zero complex number z,|z / bar z)|=1

If a,b,c are distinct odd integers and omega is non real cube root of unity, and minimum value of |a omega^(2)+b+c omega| ,is , K sqrt(3) ,then the value of K is

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The minimum value of |a+bomega+comega^(2)|, where a,b,c are all not eq...

    Text Solution

    |

  2. The shaded region, where P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),...

    Text Solution

    |

  3. If a,b,c are distinct integers and omega(ne 1) is a cube root of unity...

    Text Solution

    |

  4. Let a and b be two positive real numbers and z(1) and z(2) be two non-...

    Text Solution

    |

  5. If points having affixes z, -iz and 1 are collinear, then z lies on

    Text Solution

    |

  6. If 0 le "arg"(z) le pi/4, then the least value of |z-i|, is

    Text Solution

    |

  7. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  8. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |

  9. Let omega be the complex number cos((2pi)/3)+isin((2pi)/3). Then the...

    Text Solution

    |

  10. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  11. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  12. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  13. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  14. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  15. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  16. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  17. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  18. If z is any complex number satisfying |z-3-2i|lt=2 then the maximum va...

    Text Solution

    |

  19. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  20. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |