Home
Class 12
MATHS
Let omega be the complex number cos((2...

Let `omega` be the complex number `cos((2pi)/3)+isin((2pi)/3)`. Then the number of distinct complex cos numbers z satisfying `Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0` is

A

1

B

0

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A

Clearly, `omega` is a complete cube root of unity.
`therefore 1+omega+omega^(2)=0`
We have, `|{:(z+1,omega,omega^(2)),(omega, z+omega^(2),1),(omega^(2),1,z+omega)|=0`
`rArr |{:(z+1+omega+omega^(2),omega,omega^(2)),(z+1+omega+omega^(2),1),(z+1+omega+omega^(2),1,z+omega):}|=0`
Applying
`C_(1) to C_(1)+C_(2)+C_(3)`
`rArr z|{:(1,omega,omega^(2)),(1,z+omega^(2),1),(1,1,z+omega)|=0`
`rArr z|{:(1,omega,omega^(2)),(0,z+omega^(2)-omega,1-omega^(2)):}|=0` Applying `R_(2) to R_(2) -R_(1), R_(3) to R_(3)-R_(1)`
`rArr z^(3)=0 rArr z=0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let omega be the complex number cos((2 pi)/(3))+i sin((2 pi)/(3))* Then the number of distinct complex cos numbers z satisfying Delta=det[[omega,z+omega^(2),1omega,z+omega^(2),1omega^(2),1,z+omega]]=0 is

Let w be the complex number cos(2pi)/3 + isin(2pi)/3 . Then the number of distinct complex numbers z satisfying |(z+1, w, w^2),(2, z+w^2, 1),(w^2, 1, z+w)|=0 is equal

Find the number of values of complex numbers omega satisfying the system of equations z^(3)==(overlineomega)^(7) and z^(5).omega^(11)=1

Let w(Im w!=0) be a complex number.Then the set of all complex numbers z satisfying the equal w-bar(w)z=k(1-z), for some real number k,is :

Find number of values of complex numbers omega satisfying the system of equaltion z^(3)=-(bar(omega))^(7) and z^(5).omega^(11)=1

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then

If complex number omega=(5+3z)/(5(1-z))|z|<1 then

Let z,omega be complex number such that z+ibar(omega)=0 and z omega=pi. Then find arg z

Let Z and w be two complex number such that |zw|=1 and arg(z)-arg(w)=pi/2 then

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. If |z1|+|z2|=1 and z1+z2+z3=0 then the area of the triangle whose vert...

    Text Solution

    |

  2. Let Z1 and Z2, be two distinct complex numbers and let w = (1 - t) z1 ...

    Text Solution

    |

  3. Let omega be the complex number cos((2pi)/3)+isin((2pi)/3). Then the...

    Text Solution

    |

  4. The set of points z in the complex plane satisfying |z-i|z||=|z+i|z|| ...

    Text Solution

    |

  5. The set of points z satisfying |z+4|+|z-4|=10 is contained or equal to

    Text Solution

    |

  6. If |omega|=2, then the set of points z=omega-1/omega is contained in o...

    Text Solution

    |

  7. If |omega|=1, then the set of points z=omega+1/omega is contained in o...

    Text Solution

    |

  8. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  9. Let alpha and beta be real numbers and z be a complex number. If z^(2...

    Text Solution

    |

  10. If omega !=1 is the complex cube root of unity and matrix H=[(omega,...

    Text Solution

    |

  11. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  12. If z is any complex number satisfying |z-3-2i|lt=2 then the maximum va...

    Text Solution

    |

  13. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  14. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  15. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  16. The minimum value of |z(1)-z(2)| as z(1) and z(2) vary over the curves...

    Text Solution

    |

  17. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  18. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  19. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  20. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |