Home
Class 12
MATHS
Let omega be the solution of x^(3)-1=0 w...

Let `omega` be the solution of `x^(3)-1=0` with `"Im"(omega) gt 0`. If a=2 with b and c satisfying `[abc][{:(1,9,7),(2,8,7),(7,3,7):}]=[0,0,0]`, then the value of `3/omega^(a) + 1/omega^(b) + 1/omega^( c)` is equal to

A

`-2`

B

2

C

3

D

`-3`

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`[abc][{:(1,9,7),(2,8,7),(7,3,7):}]=[0,0,0]`
`rArr [a+2b+7c, 9a+8b+3c, 7a+7b+7c]=[0 0 0]`
`rArr a+2b+7c=0, 9a+8b+3c=0`and `7a+7b+7c=0`
`rArr a=5,b=-6,c=1`
Clearly, `omega=-1/sqrt(2)+isqrt(3)/2` and it satisfies `omega^(3)=1, 1/omega=omega^(2)`
`therefore 3/omega^(a)+1/omega^(b)+3/omega^(c)=3/omega^(5)+1/omega^(-6)+3/omega^(1)=3omega+1+3omega^(2)`
`=3(omega^(2)+omega)+1=-3+1=-2`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7),(7,3,7)]=[0,0,0] Let omega be a solution of x^3-1=0 with Im(omega)gt0. I fa=2 with b nd c satisfying (E) then the vlaue of 3/omega^a+1/omega^b+3/omega^c is equa to (A) -2 (B) 2 (C) 3 (D) -3

log_((1)/(9))w=log_(3)7, then the value of w is

Let omega be a complex cube root of unity with 0

If w ne 1 is a cube root of unity and Delta=|{:(x+w^(2),w,1),(w,w^(2),1+x),(1,x+w,w^(2)):}|=0 , then value of x is

2x^(2) + 3x - alpha - 0 " has roots "-2 and beta " while the equation "x^(2) - 3mx + 2m^(2) = 0 " has both roots positive, where " alpha gt 0 and beta gt 0. If omega, omega^(2) are the cube roots of unity, then (1+omega) (1+omega^(2))(1+omega^(3)) (1+ omega + omega ^(2)) is equal to

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. The maximum value of |a r g(1/(1-z))|for|z|=1,z!=1 is given by.

    Text Solution

    |

  2. If z is any complex number satisfying |z-3-2i|lt=2 then the maximum va...

    Text Solution

    |

  3. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  4. The set {R e((2i z)/(1-z^2)): zi sacom p l e xnu m b e r ,|z|=1,z=+-1}...

    Text Solution

    |

  5. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  6. The minimum value of |z(1)-z(2)| as z(1) and z(2) vary over the curves...

    Text Solution

    |

  7. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  8. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  9. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  10. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  11. Let z(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9. Then, 1/10{|1-z(1)|...

    Text Solution

    |

  12. In Q. No. 121, 1-sum(k=1)^(9)cos(2kpi)/10 equals

    Text Solution

    |

  13. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  14. A complex number z is said to be uni-modular if |z|=1. Suppose z(1) a...

    Text Solution

    |

  15. If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z,...

    Text Solution

    |

  16. f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) ...

    Text Solution

    |

  17. If z(1) and z(2) are lying on |z-3| le 4 and |z-1|=|z+1|=3 respecivel...

    Text Solution

    |

  18. If |z-1| =1 and arg(z)=theta, where z ne 0 and theta is acute, then (1...

    Text Solution

    |

  19. If z is a complex number lying in the first quadrant such that "Re"(z)...

    Text Solution

    |

  20. The maximum area of the triangle formed by the complex coordinates z,...

    Text Solution

    |