Home
Class 12
MATHS
Let complex numbers alpha and 1/alpha li...

Let complex numbers `alpha and 1/alpha` lies on circle `(x-x_0)^2(y-y_0)^2=r^2 and (x-x_0)^2+(y-y_0)^2=4r^2` respectively. If `z_0=x_0+iy_0` satisfies the equation `2|z_0|^2=r^2+2` then `|alpha|` is equal to (a) `1/sqrt2` (b) `1/2` (c) `1/sqrt7` (d) `1/3`

A

`1/sqrt(2)`

B

`1/2`

C

`1/sqrt(7)`

D

`1/3`

Text Solution

Verified by Experts

The correct Answer is:
C

The equation of the circles are
`|z-z_(0)|=r`……………(i) and `|z-z_(0)|=2r` …………….(ii)
`therefore |alpha-z_(0)|=r^(2)` and `|1/alpha-z_(0)|^(2)=4r^(2)`
`rArr |alpha-z_(0)|^(2)=r^(2)` and `|alpha/|alpha|^(2)-z_(0)|^(2)=4r^(2)`
`rArr (alpha-z_(0))|^(2)=4r^(2)`
`rArr (alpha-z_(0))(baralpha-barz_(0))=r^(2)` and `(alpha/|alpha|^(2)-z_(0))(baralpha/|(alpha)|^(2)-barz_(0))=4r^(2)`
`rArr alphabaralpha=alphabarz_(0)-baralphaz_(0)+z_(0)barz_(0)=r^(2)`
and `, (alphabaralpha)/(|alpha|^(4))-(alphabarz_(0))/(|alpha|^(2))-(baralphaz_(0))/(|alpha|^(2))|+z_(0)barz_(0)=4r^(2)`
`rArr |alpha|^(2)-alphabarz_(0)-baralphaz_(0)+|z_(0)|^(2)=4r^(2)`
`rArr |alpha|^(2)-(alphabarz_(0)+baralphaz_(0))+|z_(0)|^(2)`
and `1/|a|^(2)-1/|alpha|^(2)(alphabarz_(0)+baralphaz_(0))+|z_(0)|^(2)=4r^(2)`
`rArr |alpha|^(2)-(alphabarz_(0)-baraz_(0))+|z_(0)|^(2)=r^(2)`
and,` 1-(abarz_(0)+baralphaz_(0))+|alpha|^(2)|z_(0)|^(2)=4|alpha|^(2)r^(2)`
Subtracting first equation from second equation, we get
`(1-|alpha|^(2))+(|alpha|^(2)-1)|z_(0)|^(2)=(4|alpha|^(2)-1)r^(2)`
`rArr 1-|alpha|^(2)-1=8|alpha|^(2) -2 rArr 7|alpha|^(2) rArr |alpha|=1/sqrt(7)`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Let complex numbers alpha and (1)/(alpha) lies on circle (x-x_(0))^(2)(y-y_(0))^(2)=r^(2) and (x-x_(0))^(2)+(y-y_(0))^(2)=4r^(2) respectively.If z_(0)=x_(0)+iy_(0) satisfies the equation 2|z_(0)|^(2)=r^(2)+2 then | alpha| is equal to (a) (1)/(sqrt(2))( b )(1)/(2)(c)(1)/(sqrt(7)) (d) (1)/(3)

Let complex numbers alpha " and " (1)/(bar alpha) lies on circles (x - x_(0))^(2) + (y- y_(0))^(2) = r^(2) and (x - x_(0))^(2) + (y - y_(0))^(2) = 4x^(2) , , respectively. If z_(0) = x_(0) + iy_(0) satisfies the equation 2 | z_(0) |^(2) = r^(2) + 2 , then |alpha| is equal to:

The number of common tangents of the circles x^(2)+y^(2)+4x+1=0 and x^(2)+y^(2)-2y-7=0 , is

If (x^2+y^2)dy=xydx and y(1)=1 . If y(x_0)=e then x_0 is equal to (A) sqrt(2)e (B) sqrt(3)e (C) 2e (D) e

Lines (x-1)/1 = (y-1)/2 = (z-3)/0 and (x-2)/0 = (y-3)/0 = (z-4)/1 are

The plane x+2y-z=4 cuts the sphere x^2+y^2+z^2-x+z-2=0 in a circle of radius (A) sqrt(2) (B) 2 (C) 1 (D) 3

The number of solutions of the system of equations: 2x+y-z=7,\ \ x-3y+2z=1,\ \ x+4y-3z=5 is (a) 3 (b) 2 (c) 1 (d) 0

A variable complex number z=x+iy is such that arg (z-1)/(z+1)= pi/2 . Show that x^2+y^2-1=0 .

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Section I - Solved Mcqs
  1. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  2. The minimum value of |z(1)-z(2)| as z(1) and z(2) vary over the curves...

    Text Solution

    |

  3. Let complex numbers alpha and 1/alpha lies on circle (x-x0)^2(y-y0)^2=...

    Text Solution

    |

  4. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  5. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  6. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  7. Let z(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9. Then, 1/10{|1-z(1)|...

    Text Solution

    |

  8. In Q. No. 121, 1-sum(k=1)^(9)cos(2kpi)/10 equals

    Text Solution

    |

  9. If z is a complex number such that |z|>=2 then the minimum value of |z...

    Text Solution

    |

  10. A complex number z is said to be uni-modular if |z|=1. Suppose z(1) a...

    Text Solution

    |

  11. If |z-2-i|=|z|sin(pi/4-a r g z)| , where i=sqrt(-1) ,then locus of z,...

    Text Solution

    |

  12. f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) ...

    Text Solution

    |

  13. If z(1) and z(2) are lying on |z-3| le 4 and |z-1|=|z+1|=3 respecivel...

    Text Solution

    |

  14. If |z-1| =1 and arg(z)=theta, where z ne 0 and theta is acute, then (1...

    Text Solution

    |

  15. If z is a complex number lying in the first quadrant such that "Re"(z)...

    Text Solution

    |

  16. The maximum area of the triangle formed by the complex coordinates z,...

    Text Solution

    |

  17. If z is a complex number satisfying |z|^(2)+2(z+2)+3i(z-barz)+4 =0, th...

    Text Solution

    |

  18. Locus of z if arg[z - (1 + i)] = {(3pi)/4 when |z|le|z-2| and (-pi)/4...

    Text Solution

    |

  19. Let z in C and if A={z:"arg"(z)=pi/4}and B={z:"arg"(z-3-3i)=(2pi)/3}. ...

    Text Solution

    |

  20. Let S={z in C:z(iz(1)+1,|z(1)| lt 1}. Then, for all z in S, which one ...

    Text Solution

    |