Home
Class 12
MATHS
Statement-1: for any non-zero complex nu...

Statement-1: for any non-zero complex number `|z-1| le ||z|-1|+|z|` arg (z)
Statement-2 : For any non-zero complex number z
`|z/(|z|)-1| le "arg"(z)`

A

Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.

B

Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.

C

Statement-1 is True, statement-2 is false,

D

statement-1 is False, Statement-2 is true.

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Exercise|131 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|141 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

Statement-1: for any non-zero complex number z, |z/|z|-1| le "arg"(z) Stetement-2 :sintheta le theta for theta ge 0

Statement -1: for any complex number z, |Re(z)|+|Im(z)| le |z| Statement-2: |sintheta| le 1 , for all theta

Let z be any non-zero complex number. Then pr. arg(z) + pr.arg (barz) is equal to

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

Statement-1, If z_(1),z_(2),z_(3),……………….,z_(n) are uni-modular complex numbers, then |z_(1)+z+(2)+…………+z_(n)|=|1/z_(1)+1/z_(2)+…………..+1/z_(n)| Statement-2: For any complex number z, zbarz=|z|^(2)

The complex number z satisfying |z+1|=|z-1| and arg (z-1)/(z+1)=pi/4 , is

Statement-1 If|z_1| and |z_2| are two complex numbers such that |z_1|=|z_2|+|z_1-z_2|, then Im(z_1/z_2)=0 and Statement-2: arg(z)=0 =>z is purely real