Home
Class 12
MATHS
If "Im"(2z+1)/(iz+1)=-2, then locus of z...

If `"Im"(2z+1)/(iz+1)=-2`, then locus of z, is

A

a circle

B

a parabola

C

a straight line

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the complex number \( z \) given the equation \( \text{Im}\left(\frac{2z + 1}{iz + 1}\right) = -2 \), we will follow these steps: ### Step 1: Substitute \( z \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we can express \( 2z + 1 \) and \( iz + 1 \) as follows: \[ 2z + 1 = 2(x + iy) + 1 = 2x + 1 + 2iy \] \[ iz + 1 = i(x + iy) + 1 = ix - y + 1 = 1 - y + ix \] ### Step 2: Write the expression Now we can write the expression: \[ \frac{2z + 1}{iz + 1} = \frac{2x + 1 + 2iy}{1 - y + ix} \] ### Step 3: Multiply by the conjugate To simplify this expression, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(2x + 1 + 2iy)(1 - y - ix)}{(1 - y + ix)(1 - y - ix)} \] ### Step 4: Simplify the denominator The denominator simplifies as follows: \[ (1 - y)^2 + x^2 \] ### Step 5: Expand the numerator Now, expand the numerator: \[ (2x + 1)(1 - y) + (2iy)(1 - y) - (2x + 1)(ix) - (2iy)(ix) \] This gives: \[ (2x + 1 - 2xy - y) + i(2y - 2x - x(2y + 1)) \] ### Step 6: Collect real and imaginary parts The real part is: \[ 2x + 1 - 2xy - y \] The imaginary part is: \[ 2y - 2x - x(2y + 1) \] ### Step 7: Set the imaginary part equal to -2 From the problem statement, we have: \[ \text{Im}\left(\frac{2z + 1}{iz + 1}\right) = -2 \] Thus, we set: \[ 2y - 2x - x(2y + 1) = -2 \] ### Step 8: Rearranging the equation Rearranging gives: \[ 2y - 2x - 2xy - x + 2 = 0 \] This simplifies to: \[ -2xy - 3x + 2y + 2 = 0 \] ### Step 9: Rearranging to find the locus Rearranging further gives: \[ 2y - 2xy - 3x + 2 = 0 \] This is a linear equation in \( x \) and \( y \). ### Step 10: Identify the locus The equation represents a straight line in the \( xy \)-plane. ### Final Result The locus of \( z \) is a straight line. ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

If Im((z-1)/(2z+1))=-4, then locus of z is

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Im((z-i)/(2i))=0 then the locus of z is

If the imaginary part of (2z + 1)/(iz + 1) is -4, then the locus of the point representing z in the complex plane is

If z=x+iy and real part ((z-1)/(2z+1))=1 then locus of z is

Statement-1 : The locus of z , if arg((z-1)/(z+1)) = pi/2 is a circle. and Statement -2 : |(z-2)/(z+2)| = pi/2 , then the locus of z is a circle.

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Exercise
  1. The inequality |z-4| < |z-2| represents

    Text Solution

    |

  2. Number of non-zero integral solution of the equation |1-i| ^(n)=2^(n),...

    Text Solution

    |

  3. If "Im"(2z+1)/(iz+1)=-2, then locus of z, is

    Text Solution

    |

  4. lf z(!=-1) is a complex number such that [z-1]/[z+1] is purely imagina...

    Text Solution

    |

  5. If x=-5+2sqrt(-4) , find the value of x^4+9x^3+35 x^2-x+4.

    Text Solution

    |

  6. If z(1),z(2), z(3) are vertices of an equilateral triangle with z(0) i...

    Text Solution

    |

  7. If z1,z2 are two complex numbers such that Im(z1+z2)=0,Im(z1z2)=0, the...

    Text Solution

    |

  8. If z^2+z|z|+|z^2|=0, then the locus z is a. a circle b. a straight ...

    Text Solution

    |

  9. If log sqrt(3)((|z|^(2)-|z|+1)/(2+|z|))gt2, then the locus of z is

    Text Solution

    |

  10. Let g(x) and h(x) are two polynomials such that the polynomial P(x) =g...

    Text Solution

    |

  11. If g(x) and h(x) are two polynomials such that the polynomials P(x)=g(...

    Text Solution

    |

  12. If |z(1)|=|z(2)|=|z(3)| and z(1)+z(2)+z(3)=0, then z(1),z(2),z(3) are ...

    Text Solution

    |

  13. If x(n)=cos(pi/3^(n))+isin((pi)/(3^(n))), then x(1),x(2),x(3),……………….....

    Text Solution

    |

  14. If (a1+ib1)(a2+ib2).....(an+ibn)=A+iB, then (a1^2+b1^2)(a2^2+b2^2).......

    Text Solution

    |

  15. If (a(1)+ib(1))(a(2)+ib(2))………………(a(n)+ib(n))=A+iB, then sum(i=1)^(n) ...

    Text Solution

    |

  16. If cosalpha+2cosbeta+3cosgamma=sinalpha+2sinbeta+3singamma=0 then the ...

    Text Solution

    |

  17. If alpha,beta,gamma are the cube roots of p, then for any x,y,z (x al...

    Text Solution

    |

  18. Prove that t a n(i(log)e((a-i b)/(a+i b)))=(2a b)/(a^2-b^2)(w h e r ea...

    Text Solution

    |

  19. Find the relation if z1, z2, z3, z4 are the affixes of the vertices of...

    Text Solution

    |

  20. The locus of the points representing the complex numbers z for which |...

    Text Solution

    |