Home
Class 12
MATHS
The value of sum(r=1)^(8)(sin(2rpi)/9+ic...

The value of `sum_(r=1)^(8)(sin(2rpi)/9+icos(2rpi)/9)`, is

A

`-1`

B

1

C

i

D

`-i`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ S = \sum_{r=1}^{8} \left( \sin\left(\frac{2\pi r}{9}\right) + i \cos\left(\frac{2\pi r}{9}\right) \right) \] ### Step 1: Rewrite the sum We can rewrite the sine and cosine terms using Euler's formula. According to Euler's formula, we have: \[ e^{i\theta} = \cos(\theta) + i\sin(\theta) \] Thus, we can express our sum as: \[ S = \sum_{r=1}^{8} \left( i \cos\left(\frac{2\pi r}{9}\right) + \sin\left(\frac{2\pi r}{9}\right) \right) \] ### Step 2: Change the index of summation To simplify the computation, we can change the index of summation to start from \( r=0 \) to \( r=8 \) and then subtract the term at \( r=0 \): \[ S = \sum_{r=0}^{8} \left( \sin\left(\frac{2\pi r}{9}\right) + i \cos\left(\frac{2\pi r}{9}\right) \right) - \left( \sin(0) + i \cos(0) \right) \] ### Step 3: Evaluate the term at \( r=0 \) Calculating the term at \( r=0 \): \[ \sin(0) = 0, \quad \cos(0) = 1 \implies \text{So, } \sin(0) + i \cos(0) = 0 + i(1) = i \] ### Step 4: Sum the series Now we need to evaluate: \[ \sum_{r=0}^{8} \left( \sin\left(\frac{2\pi r}{9}\right) + i \cos\left(\frac{2\pi r}{9}\right) \right) \] Using the property of complex exponentials, we can write: \[ \sin\left(\frac{2\pi r}{9}\right) + i \cos\left(\frac{2\pi r}{9}\right) = i \left( \cos\left(\frac{2\pi r}{9}\right) - i \sin\left(\frac{2\pi r}{9}\right) \right) = i e^{-i\frac{2\pi r}{9}} \] Thus, our sum becomes: \[ S = i \sum_{r=0}^{8} e^{-i\frac{2\pi r}{9}} - i \] ### Step 5: Evaluate the geometric series The sum \( \sum_{r=0}^{8} e^{-i\frac{2\pi r}{9}} \) is a geometric series with first term \( a = 1 \) and common ratio \( r = e^{-i\frac{2\pi}{9}} \): \[ \sum_{r=0}^{n-1} ar^r = \frac{1 - r^n}{1 - r} = \frac{1 - e^{-i\frac{2\pi \cdot 9}{9}}}{1 - e^{-i\frac{2\pi}{9}}} = \frac{1 - e^{-2\pi i}}{1 - e^{-i\frac{2\pi}{9}}} \] Since \( e^{-2\pi i} = 1 \): \[ \sum_{r=0}^{8} e^{-i\frac{2\pi r}{9}} = \frac{1 - 1}{1 - e^{-i\frac{2\pi}{9}}} = 0 \] ### Step 6: Final result Substituting back into our equation for \( S \): \[ S = i \cdot 0 - i = -i \] Thus, the final value of the sum is: \[ \boxed{-i} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|59 Videos
  • COMPLEX NUMBERS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|15 Videos
  • CIRCLES

    OBJECTIVE RD SHARMA|Exercise Chapter Test|55 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    OBJECTIVE RD SHARMA|Exercise Exercise|86 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^(360)sin(r^(@))=

The value of sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11} , is

The value of | sum_(r=1)^(23) cos ((rpi)/(12))| is

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

The exact numerical value of sum_(r=1)^(r=4)(sin(((2r-1)pi)/(8)))^(4)+sum_(r=1)^(4)(cos(((2r-1)pi)/(8)))^(4)

The exact numerical value of sum_(r=1)^(4-4)((sin((2r-1)pi))/(8))^(4)+sum_(r=1)^(4)((cos((2r-1)pi))/(8))^(4)

Find the value of sum_(r=1)^(4)(2+tan(((2r-1)pi)/(8))*tan(((2r+1)pi)/(8)))

Find the value of sum_(r=1)^(4)(2+tan((2r-1)(pi)/(8))*tan((2r+1)(pi)/(8)))

OBJECTIVE RD SHARMA-COMPLEX NUMBERS -Exercise
  1. The join of z(1)=a+ib and z(2)=1/(-a+ib) passes through

    Text Solution

    |

  2. If z1, z2, z3, z4 are the affixes of four point in the Argand plane, z...

    Text Solution

    |

  3. The value of sum(r=1)^(8)(sin(2rpi)/9+icos(2rpi)/9), is

    Text Solution

    |

  4. If z(1),z(2),z(3),…………..,z(n) are n nth roots of unity, then for k=1,2...

    Text Solution

    |

  5. If z1,z2 and z3,z4 are two pairs of conjugate complex numbers then arg...

    Text Solution

    |

  6. If |z(1)|=|z(2)| and arg (z(1))+"arg"(z(2))=0, then

    Text Solution

    |

  7. If one vertex of a square whose diagonals intersect at the origin is 3...

    Text Solution

    |

  8. The value of z satisfying the equation logz+logz^(2)+……..+logz^(n)=0...

    Text Solution

    |

  9. If |z(1)|=|z(2)|=………….=|z-(n)|=1, then the value of |z(1)+z(2)+………+z(n...

    Text Solution

    |

  10. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  11. If omega is the complex cube root of unity then |[1,1+i+omega^2,omeg...

    Text Solution

    |

  12. Let z and omega be two non-zero complex numbers, such that |z|=|omega|...

    Text Solution

    |

  13. If z ne 0 be a complex number and "arg"(z)=pi//4, then

    Text Solution

    |

  14. (1+i)^8+(1-i)^8=?

    Text Solution

    |

  15. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  16. If alphaand betaare different complex numbers with |beta|=1,then fin...

    Text Solution

    |

  17. For any complex number z, the minimum value of |z|+|z-1|

    Text Solution

    |

  18. If (3pi)/(2) gt alpha gt 2 pi, find the modulus and argument of (1 -...

    Text Solution

    |

  19. If the roots of (z-1)^n=i(z+1)^n are plotted in ten Argand plane, then...

    Text Solution

    |

  20. Area of the triangle formed by 3 complex numbers, 1+i,i-1,2i, in the A...

    Text Solution

    |